Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Решение дифференциальных уравнений с переменными коэффициентами.





С помощью преобразования Лапласа можно выполнить интегрирование некоторых видов линейных дифференциальных уравнений с переменными коэффициентами.

Пусть задано дифференциальное уравнение:

Рассмотрим случай, когда коэффициенты этого уравнения являются полиномами от t, тогда это уравнение может быть преобразовано по Лапласу, если воспользоваться теоремой дифференцирования изображения.

……………………………………………………….

Подставляя в уравнение полученные результаты, можно убедиться, что исходное дифференциальное уравнение преобразуется в дифференциальное уравнение относительно , но это уже будет обыкновенное линейное дифференциальное уравнение. Порядок этого уравнения будет такой, какова наивысшая степень t имеющаяся в исходном уравнении.

Целесообразность преобразования по Лапласу в том, что преобразованное дифференциальное уравнение оказывается более простым, чем исходное.

Пример. Найти общее решение дифференциального уравнения

или

.

Получим линейное дифференциальное уравнение 1 порядка. Решим его методом Бернулли с помощью подстановки X=UV. При этом уравнение примет вид:

Согласно методу Бернулли будем иметь:

Тогда изображения искомого решения примет вид:

Возвращаясь к оригиналу, получим

8.4 Решение систем линейных дифференциальных уравнений с постоянными коэффициентами.

Пусть дана система n дифференциальных уравнений 2го порядка.

, (8.9)

где к -тая функция, которую необходимо найти,

- коэффициенты системы,

- правые части.

Пусть заданы начальные условия

Пусть

Применяя к обеим частям каждого уравнения преобразование Лапласа, получим систему:

,

Эта алгебраическая система относительно неизвестных . Решим её и затем переходим к оригиналам.

Пример. Решить систему

При начальных условиях x(0)=1, y(0)=0, z(0)=-1.

Решение: Пусть , ,

В области изображений система примет вид:

или

Решим систему:

.

Аналогично найдутся и другие функции y (t) и z (t). Для решения системы дифференциальных уравнений операторным методом требуется решить только одну систему линейных алгебраических уравнений. При этом учитываются и начальные условия. Следует отметить возможность нахождения каждой неизвестной функции независимо от других. Проделать тоже самое классическим методом весьма затруднительно.

8.5 Линейные дифференциальные уравнения с запаздывающим аргументом.

В ряде технических задач приходится иметь дело с дифференциальными уравнениями, в которых неизвестная функция входит при различных значениях аргумента, например:

и т.п.

Такие уравнения называются дифференциальными уравнениями с отклоняющимися аргументами.

Если постоянные, то мы имеем так называемое дифференциально – разностное уравнение.

Если и старшая производная входит в дифференциально-разностноеуравнение только при одном значении аргумента, не меньшем всех других аргументов функций и производных, входящих в уравнение, то уравнение называют дифференциальным уравнением с запаздывающим аргументом.

Пусть дано дифференциальное уравнение с запаздывающим аргументом с постоянными коэффициентами

,

где = const, .

Возьмем для простоты нулевые начальные условия

.

Применяя преобразования Лапласа, получим

.

Откуда найдем

от изображения переходим к оригиналу x(t).

Пример: Решить уравнение.

.

Решение:

В области изображений откуда

Переходим к оригиналу

.

 

8.6 Интегральные уравнения типа «свертки».

Интегральным уравнением называется уравнение, содержащее искомую функцию под знаком интеграла.

Например, (8.10)

-это линейное интегральное уравнение Фредгольма второго рода.

Здесь y(x) – неизвестная функция,

f(x) и r(x,t) – заданные функции.

Функцию r(x,t) называют ядром уравнения (8.10),

a и b=const.

Изменим (8.10) следующим образом.

(8.11)

Получим линейное интегральное уравнение Вольтерра 2го рода.

Если в (8.10) и (8.11) , то уравнения будут называться однородными.

Если искомая функция y(x) входит только под знак интеграла, то (8.10) и (8.11) преобразуются в уравнения Фредгольма и Вольтерра 1го рода.

или .

Совершенно очевидно, что большую роль в решении будет играть ядро уравнения, т.е. функция r(x,t). Важный класс уравнений Вольтерра получается, если ядро r(x,t) зависит только от разности

r(x,t)=r(x-t).

Уравнение в этом случае имеет вид.

(8.12)

Его еще называют уравнением типа свертки.

Пусть входящие в уравнение (8.12) функции удовлетворяют условиям оригинала, тогда может быть найдено изображение функций по Лапласу

Пользуясь формулой свертки, получим операторное уравнение

.

Откуда

.

Для Ф(р) находим - решение интегрального уравнения (8.12).

Пример. Решить интегральное уравнение

.

Решение:

 

Так же решаются и системы интегральных уравнений.

Пример. Решить систему интегральных уравнений

 

в области изображений получим:

преобразовав, будем иметь:

или,

 

решим методом Крамера:

 







Дата добавления: 2015-09-18; просмотров: 1152. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Билиодигестивные анастомозы Показания для наложения билиодигестивных анастомозов: 1. нарушения проходимости терминального отдела холедоха при доброкачественной патологии (стенозы и стриктуры холедоха) 2. опухоли большого дуоденального сосочка...

Сосудистый шов (ручной Карреля, механический шов). Операции при ранениях крупных сосудов 1912 г., Каррель – впервые предложил методику сосудистого шва. Сосудистый шов применяется для восстановления магистрального кровотока при лечении...

Трамадол (Маброн, Плазадол, Трамал, Трамалин) Групповая принадлежность · Наркотический анальгетик со смешанным механизмом действия, агонист опиоидных рецепторов...

Дизартрии у детей Выделение клинических форм дизартрии у детей является в большой степени условным, так как у них крайне редко бывают локальные поражения мозга, с которыми связаны четко определенные синдромы двигательных нарушений...

Педагогическая структура процесса социализации Характеризуя социализацию как педагогический процессе, следует рассмотреть ее основные компоненты: цель, содержание, средства, функции субъекта и объекта...

Типовые ситуационные задачи. Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической   Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической нагрузке. Из медицинской книжки установлено, что он страдает врожденным пороком сердца....

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия