Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

ИМПУЛЬСНЫЕ ФУНКЦИИ И ИХ ИЗОБРАЖЕНИЯ





Функции, которые не стремятся к нулю при , можно считать изображениями лишь в совершенно условном смысле. Эти условные изображения и соответствующие им оригиналы, так называемые импульсные функции, были введены Дираком и оказались полезными в ряде прикладных задач, в которых приходиться иметь дело с величинами, имеющими характер мгновенного толчка.

Рассмотрим функцию , график которой приведен на рис.6.1.

Она представляет величину, которая действует лишь на отрезке , где имеет постоянное значение , суммарный эффект ее действия равен .

 


Предположим теперь, что ; семейство функций , очевидно при этом расходится, но мы введем условную функцию , которую будем считать пределом такого семейства,

,

и называть импульсной функцией нулевого порядка, или короче, - функцией. Импульсная функция равна нулю всюду, кроме точки , где она равна и, тем не менее, для нее считается справедливым соотношение

,

предельное для такого же соотношения с функцией .

Таким образом, - функция представляет собой условное сокращенное образование для вполне определенного предельного процесса, который часто рассматривается в физике: бесконечно большая величина, действующая в бесконечно малый промежуток времени с суммарным эффектом, равным 1. Введение этой функции сильно упрощает вычисления, связанные с таким предельным процессом. Дельта – функция относится к обобщенным функциям.

Условимся считать, что изображение - функции получается как предельное для изображения функции:

, которое

по теореме запаздывания равно

Переходя к пределу при , получим (условно)

Полученный результат можно «подкрепить» следующими соображениями.

На рис.6.1 изображены пунктиром график интеграла функции

.

Из этого графика видно, что при стремится к функции , так что положим . Но тогда , а так как , то по теореме дифференцирования оригиналов снова получаем Значение оригинала при , участвующие в этой теореме, считаем равным нулю на том «основании», что оно получается как предельное при из значений ; формальное применение указанной теоремы, где мы должны положить , привело бы к неправильному результату. Удивляться этому не следует, ибо мы применяем теорему в ситуации, когда ее условия нарушаются.

Для любой функции-оригинала по теореме о среднем получаем:

,

где . Переходя здесь к пределу при , считаем по определению

 

а если разрывна при , то обозначает ее правое предельное значение.

В соответствии с этим снова получаем

Аналогично вводятся импульсные функции высших порядков:

- дельта-функция первого порядка,

- дельта-функция второго порядка,

и т.д.

 







Дата добавления: 2015-09-18; просмотров: 921. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Психолого-педагогическая характеристика студенческой группы   Характеристика группы составляется по 407 группе очного отделения зооинженерного факультета, бакалавриата по направлению «Биология» РГАУ-МСХА имени К...

Общая и профессиональная культура педагога: сущность, специфика, взаимосвязь Педагогическая культура- часть общечеловеческих культуры, в которой запечатлил духовные и материальные ценности образования и воспитания, осуществляя образовательно-воспитательный процесс...

Устройство рабочих органов мясорубки Независимо от марки мясорубки и её технических характеристик, все они имеют принципиально одинаковые устройства...

Патристика и схоластика как этап в средневековой философии Основной задачей теологии является толкование Священного писания, доказательство существования Бога и формулировка догматов Церкви...

Основные симптомы при заболеваниях органов кровообращения При болезнях органов кровообращения больные могут предъявлять различные жалобы: боли в области сердца и за грудиной, одышка, сердцебиение, перебои в сердце, удушье, отеки, цианоз головная боль, увеличение печени, слабость...

Вопрос 1. Коллективные средства защиты: вентиляция, освещение, защита от шума и вибрации Коллективные средства защиты: вентиляция, освещение, защита от шума и вибрации К коллективным средствам защиты относятся: вентиляция, отопление, освещение, защита от шума и вибрации...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия