Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Решение линейных дифференциальных уравнений с постоянными коэффициентами.





Возьмем неоднородное линейное дифференциальное уравнение второго порядка

(8.1)

и найдем его частное решение при начальных условиях

Считаем исходную функцию x(t) и правую часть f(t) оригиналами и переходим от уравнения (8.1) связывающего оригиналы к уравнению, связывающему изображения X(p) и F(p).

Изображение уравнения (8.1) будет:

.

Мы получили уже не дифференциальное, а алгебраическое уравнение относительно X(p).

.

Откуда получим операторное решение д.у.

.

Найдено изображение искомого решения. Теперь по таблицам или формулам обращения найдем x(t).

Если начальные условия нулевые, то операторное решение будет иметь простой вид:

Пример. Найти решение уравнения

при нулевых начальных условиях.

Решение:

x(t)=X(p): .

1)

2)

3)

Тогда

Изложенный метод применим к решению линейного дифференциального уравнения любого порядка.

Пример.

Решение.

Составим операторное уравнение.

.

Здесь полюса 3х кратные комплексно – сопряженные. Поэтому найдем только вычет в точке i.

Взяв, удвоенную действительную часть полученного выражения, находим

Покажем, как следует поступать, если начальные условия заданы не в нулевой точке.

Пример. Решить уравнение , при начальных условиях

х(1)=1 х/(1)=0.

Решение: введем новую переменную , положив t= +1, тогда при .

x(t)=x( +1)= .

Теперь уравнение и начальные условия перепишутся в виде:

Пусть = Х(р).

В некоторых случаях правая часть задается в виде комбинации различных аналитических выражений взятых на различных интервалах, или даже графически. Если эта функция является оригиналом, то можно применить операторный метод решения.

Пример. Решить задачу Коши.

если f(t) задана графически (рис.8.1).

Решение: Запишем в аналитическом виде с помощью функции :

Применяя теорему запаздывания, получим

.

Пусть x(t)=X(p), получим операторное уравнение.

.

Откуда,

Так как .

Применяя теперь теорему запаздывания, получим

или

.







Дата добавления: 2015-09-18; просмотров: 634. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Репродуктивное здоровье, как составляющая часть здоровья человека и общества   Репродуктивное здоровье – это состояние полного физического, умственного и социального благополучия при отсутствии заболеваний репродуктивной системы на всех этапах жизни человека...

Случайной величины Плотностью распределения вероятностей непрерывной случайной величины Х называют функцию f(x) – первую производную от функции распределения F(x): Понятие плотность распределения вероятностей случайной величины Х для дискретной величины неприменима...

Схема рефлекторной дуги условного слюноотделительного рефлекса При неоднократном сочетании действия предупреждающего сигнала и безусловного пищевого раздражителя формируются...

Виды нарушений опорно-двигательного аппарата у детей В общеупотребительном значении нарушение опорно-двигательного аппарата (ОДА) идентифицируется с нарушениями двигательных функций и определенными органическими поражениями (дефектами)...

Особенности массовой коммуникации Развитие средств связи и информации привело к возникновению явления массовой коммуникации...

Тема: Изучение приспособленности организмов к среде обитания Цель:выяснить механизм образования приспособлений к среде обитания и их относительный характер, сделать вывод о том, что приспособленность – результат действия естественного отбора...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия