Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Конечные разности решетчатых функций.





Выражение

(11.1)

называется конечной разностью первого порядка решетчатой функции, или просто первой разностью.

Ясно, что - представляет собой решетчатую функцию, для которой может быть вычислена конечная разность. Т.о. первая разность от решетчатой функции называется разностью второго порядка решетчатой функции , или просто второй разностью

(11.2)

Разность к – го порядка решетчатой функции определяется формулой

(11.3)

Разность любого порядка можно выразить через значения решетчатой функции .

(11.4)

Аналогично для третьей разности:

(11.5)

Для разности произвольного порядка к справедлива формула

(11.6)

где . так называемые биноминальные коэффициенты, такие что:

.

Пример.

Формулы (11.1)-(11.6) позволяют выразить саму решетчатую функцию через её разности различных порядков.

Из (11.1)

(11.7)

Из (11.2)

откуда

. (11.8)

Используя равенство (11.3) при к=3 и равенства (11.4), (11.7), (11.8) получим

(11.9)

Продолжая вычисления можно получить общую формулу

, (11.10)

при n=0

(11.11)

Формулы (11.10) и (11.11) выражают значения решетчатой функции через её конечные разности до порядка l включительно. Эти формулы являются дискретным аналогом разложения непрерывных функций в ряд Тейлора.

Примеры.

1). ,

.

2). .

3).

4).

 

Отметим, что операция взятия конечных разностей является линейной операцией, что следует из определения конечной разности

.

Используя выражение (11.1), можно вывести формулу для вычисления разности произведений 2-х функций

 

.

 







Дата добавления: 2015-09-18; просмотров: 853. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Типология суицида. Феномен суицида (самоубийство или попытка самоубийства) чаще всего связывается с представлением о психологическом кризисе личности...

ОСНОВНЫЕ ТИПЫ МОЗГА ПОЗВОНОЧНЫХ Ихтиопсидный тип мозга характерен для низших позвоночных - рыб и амфибий...

Принципы, критерии и методы оценки и аттестации персонала   Аттестация персонала является одной их важнейших функций управления персоналом...

Понятие метода в психологии. Классификация методов психологии и их характеристика Метод – это путь, способ познания, посредством которого познается предмет науки (С...

ЛЕКАРСТВЕННЫЕ ФОРМЫ ДЛЯ ИНЪЕКЦИЙ К лекарственным формам для инъекций относятся водные, спиртовые и масляные растворы, суспензии, эмульсии, ново­галеновые препараты, жидкие органопрепараты и жидкие экс­тракты, а также порошки и таблетки для имплантации...

Тема 5. Организационная структура управления гостиницей 1. Виды организационно – управленческих структур. 2. Организационно – управленческая структура современного ТГК...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия