Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Конечные разности решетчатых функций.





Выражение

(11.1)

называется конечной разностью первого порядка решетчатой функции, или просто первой разностью.

Ясно, что - представляет собой решетчатую функцию, для которой может быть вычислена конечная разность. Т.о. первая разность от решетчатой функции называется разностью второго порядка решетчатой функции , или просто второй разностью

(11.2)

Разность к – го порядка решетчатой функции определяется формулой

(11.3)

Разность любого порядка можно выразить через значения решетчатой функции .

(11.4)

Аналогично для третьей разности:

(11.5)

Для разности произвольного порядка к справедлива формула

(11.6)

где . так называемые биноминальные коэффициенты, такие что:

.

Пример.

Формулы (11.1)-(11.6) позволяют выразить саму решетчатую функцию через её разности различных порядков.

Из (11.1)

(11.7)

Из (11.2)

откуда

. (11.8)

Используя равенство (11.3) при к=3 и равенства (11.4), (11.7), (11.8) получим

(11.9)

Продолжая вычисления можно получить общую формулу

, (11.10)

при n=0

(11.11)

Формулы (11.10) и (11.11) выражают значения решетчатой функции через её конечные разности до порядка l включительно. Эти формулы являются дискретным аналогом разложения непрерывных функций в ряд Тейлора.

Примеры.

1). ,

.

2). .

3).

4).

 

Отметим, что операция взятия конечных разностей является линейной операцией, что следует из определения конечной разности

.

Используя выражение (11.1), можно вывести формулу для вычисления разности произведений 2-х функций

 

.

 







Дата добавления: 2015-09-18; просмотров: 853. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Роль органов чувств в ориентировке слепых Процесс ориентации протекает на основе совместной, интегративной деятельности сохранных анализаторов, каждый из которых при определенных объективных условиях может выступать как ведущий...

Лечебно-охранительный режим, его элементы и значение.   Терапевтическое воздействие на пациента подразумевает не только использование всех видов лечения, но и применение лечебно-охранительного режима – соблюдение условий поведения, способствующих выздоровлению...

Тема: Кинематика поступательного и вращательного движения. 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью, проекция которой изменяется со временем 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью...

СПИД: морально-этические проблемы Среди тысяч заболеваний совершенно особое, даже исключительное, место занимает ВИЧ-инфекция...

Понятие массовых мероприятий, их виды Под массовыми мероприятиями следует понимать совокупность действий или явлений социальной жизни с участием большого количества граждан...

Тактика действий нарядов полиции по предупреждению и пресечению правонарушений при проведении массовых мероприятий К особенностям проведения массовых мероприятий и факторам, влияющим на охрану общественного порядка и обеспечение общественной безопасности, можно отнести значительное количество субъектов, принимающих участие в их подготовке и проведении...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия