Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Определение дискретного преобразования Лапласа.





Дискретное преобразование Лапласа определяется формулой

(11.12)

где - комплексная переменная,

называется изображением,

- решетчатая функция.

Дискретное преобразование Лапласа также называют D - преобразованием и обозначают , т.е.

.

Наряду с D – преобразованием применяется так называемое Z – преобразование.

Z – преобразование определяется формулой (1) в которую вводится новая переменная

.

(11.13)

Z – преобразование обозначают так:

 

.

Если известно изображение некоторой решетчатой функции, то соответствующее изображение может быть найдено с помощью замены комплексной переменной q по формуле

, тогда

 

.

Аналогично можно определить изображение по заданной функции

.

Т.о. принципиальной разницы между D – преобразованием и Z – преобразованием не существует. Все основные свойства Z – преобразования могут быть получены из соответствующих свойств D – преобразования.

В выражении (11.12) справа стоит ряд, который сходится абсолютно в каждой точке полуплоскости , сходится равномерно в каждой полуплоскости и

 

 


расходится в полуплоскости (рис.11.2).

Величина называется абсциссой абсолютной сходимости D – преобразования (11.12).

Т.о. область сходимости D – преобразования есть полуплоскость, расположенная справа от прямой (рис.11.2).

Если в частности , то ряд (11.12) сходится всюду, если же , то D – преобразования не существует.

Так же можно сказать, что функция является аналитической в полуплоскости .

По аналогии с непрерывным преобразованием Лапласа, будем называть оригиналом решетчатую функцию , которая равна нулю при n<0 и удовлетворяет при условию

где М>0 и некоторые постоянные величины. Величина называется показателем роста решетчатой функции .

Теорема. Для всякого оригинала изображение определено в полуплоскости и является в этой полуплоскости аналитической функцией.

Непосредственно из определения D – преобразования по формуле (1) следует, что функция является периодической вдоль мнимой оси плоскости q с периодом .

Действительно,

где r – любое целое число.

Поэтому достаточно изучить свойства функции в любой полосе шириной . Наиболее удобна для этой цели полоса

. (рис.11.3).

 

 


Эту полосу удобно называть основной полосой.







Дата добавления: 2015-09-18; просмотров: 428. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Билиодигестивные анастомозы Показания для наложения билиодигестивных анастомозов: 1. нарушения проходимости терминального отдела холедоха при доброкачественной патологии (стенозы и стриктуры холедоха) 2. опухоли большого дуоденального сосочка...

Сосудистый шов (ручной Карреля, механический шов). Операции при ранениях крупных сосудов 1912 г., Каррель – впервые предложил методику сосудистого шва. Сосудистый шов применяется для восстановления магистрального кровотока при лечении...

Конституционно-правовые нормы, их особенности и виды Характеристика отрасли права немыслима без уяснения особенностей составляющих ее норм...

Толкование Конституции Российской Федерации: виды, способы, юридическое значение Толкование права – это специальный вид юридической деятельности по раскрытию смыслового содержания правовых норм, необходимый в процессе как законотворчества, так и реализации права...

Значення творчості Г.Сковороди для розвитку української культури Важливий внесок в історію всієї духовної культури українського народу та її барокової літературно-філософської традиції зробив, зокрема, Григорій Савич Сковорода (1722—1794 pp...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия