Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Определение дискретного преобразования Лапласа.





Дискретное преобразование Лапласа определяется формулой

(11.12)

где - комплексная переменная,

называется изображением,

- решетчатая функция.

Дискретное преобразование Лапласа также называют D - преобразованием и обозначают , т.е.

.

Наряду с D – преобразованием применяется так называемое Z – преобразование.

Z – преобразование определяется формулой (1) в которую вводится новая переменная

.

(11.13)

Z – преобразование обозначают так:

 

.

Если известно изображение некоторой решетчатой функции, то соответствующее изображение может быть найдено с помощью замены комплексной переменной q по формуле

, тогда

 

.

Аналогично можно определить изображение по заданной функции

.

Т.о. принципиальной разницы между D – преобразованием и Z – преобразованием не существует. Все основные свойства Z – преобразования могут быть получены из соответствующих свойств D – преобразования.

В выражении (11.12) справа стоит ряд, который сходится абсолютно в каждой точке полуплоскости , сходится равномерно в каждой полуплоскости и

 

 


расходится в полуплоскости (рис.11.2).

Величина называется абсциссой абсолютной сходимости D – преобразования (11.12).

Т.о. область сходимости D – преобразования есть полуплоскость, расположенная справа от прямой (рис.11.2).

Если в частности , то ряд (11.12) сходится всюду, если же , то D – преобразования не существует.

Так же можно сказать, что функция является аналитической в полуплоскости .

По аналогии с непрерывным преобразованием Лапласа, будем называть оригиналом решетчатую функцию , которая равна нулю при n<0 и удовлетворяет при условию

где М>0 и некоторые постоянные величины. Величина называется показателем роста решетчатой функции .

Теорема. Для всякого оригинала изображение определено в полуплоскости и является в этой полуплоскости аналитической функцией.

Непосредственно из определения D – преобразования по формуле (1) следует, что функция является периодической вдоль мнимой оси плоскости q с периодом .

Действительно,

где r – любое целое число.

Поэтому достаточно изучить свойства функции в любой полосе шириной . Наиболее удобна для этой цели полоса

. (рис.11.3).

 

 


Эту полосу удобно называть основной полосой.







Дата добавления: 2015-09-18; просмотров: 428. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Значення творчості Г.Сковороди для розвитку української культури Важливий внесок в історію всієї духовної культури українського народу та її барокової літературно-філософської традиції зробив, зокрема, Григорій Савич Сковорода (1722—1794 pp...

Постинъекционные осложнения, оказать необходимую помощь пациенту I.ОСЛОЖНЕНИЕ: Инфильтрат (уплотнение). II.ПРИЗНАКИ ОСЛОЖНЕНИЯ: Уплотнение...

Приготовление дезинфицирующего рабочего раствора хлорамина Задача: рассчитать необходимое количество порошка хлорамина для приготовления 5-ти литров 3% раствора...

Йодометрия. Характеристика метода Метод йодометрии основан на ОВ-реакциях, связанных с превращением I2 в ионы I- и обратно...

Броматометрия и бромометрия Броматометрический метод основан на окислении вос­становителей броматом калия в кислой среде...

Метод Фольгарда (роданометрия или тиоцианатометрия) Метод Фольгарда основан на применении в качестве осадителя титрованного раствора, содержащего роданид-ионы SCN...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия