Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Суммирование решетчатых функций.





Рассмотрим теперь операцию, которая является обратной по отношению к операции взятия конечной разности. Пусть решетчатая функция определена при положительных значениях аргумента n=0,1,2… Требуется найти такую решетчатую функцию F(n), для которой функция является первой разностью.

Эта задача аналогична задаче о нахождении первообразной в анализе обычных функций.

Искомая функция имеет вид

.

Действительно,

Функцию F (n) называют первообразной для решетчатой функции .

Если F (n) является первообразной для , то и функция F(n)+С так же является первообразной для .

Если решетчатая функция определена при всех целочисленных значениях аргумента , то для определения первообразной необходимо дополнительно потребовать, чтобы при каждом конечном n сходился ряд

.

При этом условии первообразная определяется выражением

.

И общий вид первообразной для данной решетчатой функции определяется формулой

.

Значение постоянной С можно выразить через значение первообразной при некотором фиксированном значении аргумента n=N.

.

Откуда,

.

для любого n>N.

Эта формула является аналогом формулы Ньютона – Лейбница, а выражение стоящее справа иногда называют определенной суммой.

Эту формулу можно преобразовать:

Учитывая, что можно записать и так.

, а

при N=0 получим

.

Пример. Для найти сумму F (n).

по формуле суммы членов геометрической прогрессии.

 







Дата добавления: 2015-09-18; просмотров: 461. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Этапы трансляции и их характеристика Трансляция (от лат. translatio — перевод) — процесс синтеза белка из аминокислот на матрице информационной (матричной) РНК (иРНК...

Условия, необходимые для появления жизни История жизни и история Земли неотделимы друг от друга, так как именно в процессах развития нашей планеты как космического тела закладывались определенные физические и химические условия, необходимые для появления и развития жизни...

Метод архитекторов Этот метод является наиболее часто используемым и может применяться в трех модификациях: способ с двумя точками схода, способ с одной точкой схода, способ вертикальной плоскости и опущенного плана...

Условия приобретения статуса индивидуального предпринимателя. В соответствии с п. 1 ст. 23 ГК РФ гражданин вправе заниматься предпринимательской деятельностью без образования юридического лица с момента государственной регистрации в качестве индивидуального предпринимателя. Каковы же условия такой регистрации и...

Седалищно-прямокишечная ямка Седалищно-прямокишечная (анальная) ямка, fossa ischiorectalis (ischioanalis) – это парное углубление в области промежности, находящееся по бокам от конечного отдела прямой кишки и седалищных бугров, заполненное жировой клетчаткой, сосудами, нервами и...

Основные структурные физиотерапевтические подразделения Физиотерапевтическое подразделение является одним из структурных подразделений лечебно-профилактического учреждения, которое предназначено для оказания физиотерапевтической помощи...

Studopedia.info - Студопедия - 2014-2024 год . (0.008 сек.) русская версия | украинская версия