Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Суммирование решетчатых функций.





Рассмотрим теперь операцию, которая является обратной по отношению к операции взятия конечной разности. Пусть решетчатая функция определена при положительных значениях аргумента n=0,1,2… Требуется найти такую решетчатую функцию F(n), для которой функция является первой разностью.

Эта задача аналогична задаче о нахождении первообразной в анализе обычных функций.

Искомая функция имеет вид

.

Действительно,

Функцию F (n) называют первообразной для решетчатой функции .

Если F (n) является первообразной для , то и функция F(n)+С так же является первообразной для .

Если решетчатая функция определена при всех целочисленных значениях аргумента , то для определения первообразной необходимо дополнительно потребовать, чтобы при каждом конечном n сходился ряд

.

При этом условии первообразная определяется выражением

.

И общий вид первообразной для данной решетчатой функции определяется формулой

.

Значение постоянной С можно выразить через значение первообразной при некотором фиксированном значении аргумента n=N.

.

Откуда,

.

для любого n>N.

Эта формула является аналогом формулы Ньютона – Лейбница, а выражение стоящее справа иногда называют определенной суммой.

Эту формулу можно преобразовать:

Учитывая, что можно записать и так.

, а

при N=0 получим

.

Пример. Для найти сумму F (n).

по формуле суммы членов геометрической прогрессии.

 







Дата добавления: 2015-09-18; просмотров: 461. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Анализ микросреды предприятия Анализ микросреды направлен на анализ состояния тех со­ставляющих внешней среды, с которыми предприятие нахо­дится в непосредственном взаимодействии...

Типы конфликтных личностей (Дж. Скотт) Дж. Г. Скотт опирается на типологию Р. М. Брансом, но дополняет её. Они убеждены в своей абсолютной правоте и хотят, чтобы...

Гносеологический оптимизм, скептицизм, агностицизм.разновидности агностицизма Позицию Агностицизм защищает и критический реализм. Один из главных представителей этого направления...

Стресс-лимитирующие факторы Поскольку в каждом реализующем факторе общего адаптацион­ного синдрома при бесконтрольном его развитии заложена потенци­альная опасность появления патогенных преобразований...

ТЕОРИЯ ЗАЩИТНЫХ МЕХАНИЗМОВ ЛИЧНОСТИ В современной психологической литературе встречаются различные термины, касающиеся феноменов защиты...

Этические проблемы проведения экспериментов на человеке и животных В настоящее время четко определены новые подходы и требования к биомедицинским исследованиям...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия