Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Формула обращения.





Преобразование обратное по отношению к дискретному преобразованию Лапласа определяет решетчатую функцию по заданному изображению и определяется формулой

(11.14)

где С > .

 

Вычисление оригиналов можно производить и по формуле обращения Z – преобразования, которая может быть получена из формулы (11.14) путем замены переменной .

(11.15)

Интегрирование производится по окружности С радиуса , где С> в положительном направлении. Функция, стоящая под интегралом - аналитическая вне окружности С и на самой окружности. Применяя теорему о вычетах получим:

, (11.16)

где - полюс функции , лежащий внутри окружности С.

Иногда оказывается более удобным определять вычеты, не переходя к Z – преобразованию. Тогда формула (11.16) принимает вид

(11.17)

Пример.

Найти оригинал , соответствующий изображению

.

Решение. Выполним замену переменной

, , где .

Образуем функцию

.

Находим вычет в точке - это двукратный полюс

Таким образом,

.

 

Свойства дискретного преобразования Лапласа.

Дискретное преобразование Лапласа устанавливает соответствие между решетчатыми функциями – оригиналами и их изображениями . Различным операциям, совершаемыми над решетчатыми функциями, соответствуют при этом определенные операции, совершаемые над их изображениями.







Дата добавления: 2015-09-18; просмотров: 415. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Сравнительно-исторический метод в языкознании сравнительно-исторический метод в языкознании является одним из основных и представляет собой совокупность приёмов...

Концептуальные модели труда учителя В отечественной литературе существует несколько подходов к пониманию профессиональной деятельности учителя, которые, дополняя друг друга, расширяют психологическое представление об эффективности профессионального труда учителя...

Конституционно-правовые нормы, их особенности и виды Характеристика отрасли права немыслима без уяснения особенностей составляющих ее норм...

ФАКТОРЫ, ВЛИЯЮЩИЕ НА ИЗНОС ДЕТАЛЕЙ, И МЕТОДЫ СНИЖЕНИИ СКОРОСТИ ИЗНАШИВАНИЯ Кроме названных причин разрушений и износов, знание которых можно использовать в системе технического обслуживания и ремонта машин для повышения их долговечности, немаловажное значение имеют знания о причинах разрушения деталей в результате старения...

Различие эмпиризма и рационализма Родоначальником эмпиризма стал английский философ Ф. Бэкон. Основной тезис эмпиризма гласит: в разуме нет ничего такого...

Индекс гингивита (PMA) (Schour, Massler, 1948) Для оценки тяжести гингивита (а в последующем и ре­гистрации динамики процесса) используют папиллярно-маргинально-альвеолярный индекс (РМА)...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия