Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Решение систем линейных алгебраических уравнений методом Гаусса. Пусть требуется решить систему уравнений





Пусть требуется решить систему уравнений

(1)

Исключая сначала из второго и третьего уравнений, а затем из третьего уравнения, получаем

(2)

.

Таким образом осуществлен прямой ход в методе Гаусса.

В процессе обратного хода последовательно исключаются и из второго и первого уравнений. В результате получаем решение системы уравнений (1)

(3)

Пусть теперь дана система из n линейных уравнений с n неизвестными

(4)

… … … … …

Разделив первое уравнение на , получим разрешающее уравнение

, (5)

где ,

Умножим разрешающее уравнение (5) на и вычтем полученное уравнение из второго уравнения системы (4). Аналогично преобразуем остальные уравнения.

Система примет вид

 

(6)

… … … …

,

где

j = 2,3,...,n

 

Затем, оставляя без изменения первое уравнение, повторяем процедуру к оставшейся системе из n - 1 одного уравнения и т.д.

В результате получаем

(7)

… … … …

 

Прямой ход выполнен.

При выполнении обратного хода путем последовательного исключения неизвестных и т.д. из системы (7), получаем решение задачи

 

(8)

 

В модифицированном методе Гаусса с выбором максимального элемента по столбцу в начале 1-го шага прямого хода среди коэффициентов i = 1,2,...,n при неизвестном x находят наибольший по модулю. Пусть это . После этого в исходной системе меняют местами 1-ое и J-ое уравнения. Далее выполняется описанный выше метод.

В начале второго шага ищется максимальный по модулю элемент среди коэффициентов i = 2,3,...,n. При необходимости вновь делают перестановку и т. д.

Модифицированный алгоритм Гаусса уменьшает погрешность вычислений.

Блок-схема решения системы линейных алгебраических уравнений методом Гаусса с выбором главного элемента (по столбцу) приведена на рис. 2.1

 







Дата добавления: 2015-09-18; просмотров: 428. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Тема 2: Анатомо-топографическое строение полостей зубов верхней и нижней челюстей. Полость зуба — это сложная система разветвлений, имеющая разнообразную конфигурацию...

Виды и жанры театрализованных представлений   Проживание бронируется и оплачивается слушателями самостоятельно...

Что происходит при встрече с близнецовым пламенем   Если встреча с родственной душой может произойти достаточно спокойно – то встреча с близнецовым пламенем всегда подобна вспышке...

Способы тактических действий при проведении специальных операций Специальные операции проводятся с применением следующих основных тактических способов действий: охрана...

Искусство подбора персонала. Как оценить человека за час Искусство подбора персонала. Как оценить человека за час...

Этапы творческого процесса в изобразительной деятельности По мнению многих авторов, возникновение творческого начала в детской художественной практике носит такой же поэтапный характер, как и процесс творчества у мастеров искусства...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия