Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Решение систем линейных алгебраических уравнений методом Гаусса. Пусть требуется решить систему уравнений





Пусть требуется решить систему уравнений

(1)

Исключая сначала из второго и третьего уравнений, а затем из третьего уравнения, получаем

(2)

.

Таким образом осуществлен прямой ход в методе Гаусса.

В процессе обратного хода последовательно исключаются и из второго и первого уравнений. В результате получаем решение системы уравнений (1)

(3)

Пусть теперь дана система из n линейных уравнений с n неизвестными

(4)

… … … … …

Разделив первое уравнение на , получим разрешающее уравнение

, (5)

где ,

Умножим разрешающее уравнение (5) на и вычтем полученное уравнение из второго уравнения системы (4). Аналогично преобразуем остальные уравнения.

Система примет вид

 

(6)

… … … …

,

где

j = 2,3,...,n

 

Затем, оставляя без изменения первое уравнение, повторяем процедуру к оставшейся системе из n - 1 одного уравнения и т.д.

В результате получаем

(7)

… … … …

 

Прямой ход выполнен.

При выполнении обратного хода путем последовательного исключения неизвестных и т.д. из системы (7), получаем решение задачи

 

(8)

 

В модифицированном методе Гаусса с выбором максимального элемента по столбцу в начале 1-го шага прямого хода среди коэффициентов i = 1,2,...,n при неизвестном x находят наибольший по модулю. Пусть это . После этого в исходной системе меняют местами 1-ое и J-ое уравнения. Далее выполняется описанный выше метод.

В начале второго шага ищется максимальный по модулю элемент среди коэффициентов i = 2,3,...,n. При необходимости вновь делают перестановку и т. д.

Модифицированный алгоритм Гаусса уменьшает погрешность вычислений.

Блок-схема решения системы линейных алгебраических уравнений методом Гаусса с выбором главного элемента (по столбцу) приведена на рис. 2.1

 







Дата добавления: 2015-09-18; просмотров: 428. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Опухоли яичников в детском и подростковом возрасте Опухоли яичников занимают первое место в структуре опухолей половой системы у девочек и встречаются в возрасте 10 – 16 лет и в период полового созревания...

Способы тактических действий при проведении специальных операций Специальные операции проводятся с применением следующих основных тактических способов действий: охрана...

Искусство подбора персонала. Как оценить человека за час Искусство подбора персонала. Как оценить человека за час...

Педагогическая структура процесса социализации Характеризуя социализацию как педагогический процессе, следует рассмотреть ее основные компоненты: цель, содержание, средства, функции субъекта и объекта...

Типовые ситуационные задачи. Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической   Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической нагрузке. Из медицинской книжки установлено, что он страдает врожденным пороком сердца....

Типовые ситуационные задачи. Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт. ст. Влияние психоэмоциональных факторов отсутствует. Колебаний АД практически нет. Головной боли нет. Нормализовать...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия