Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Оценки погрешностей интерполяционных формул Ньютона





Если узлы интерполирования - равноотстоящие причем то, пологая , получим остаточные члены для 1-ой и 2-ой интерполяционных формул Ньютона:

(10)

, (11)

Где - некоторое промежуточное значение между узлом интерполирования и точкой .

(Для интерполирования , для экстраполирования возможно, что ).

При расчетах порядок n разностей выбирается таким, что . Учитывая, что h достаточно мало и и что

можно положить:

(12)

При этом остаточные члены интерполяционных формул Ньютона будут равны

Пример: В пятизначных таблицах логарифмов даются логарифмы целых чисел от х=1000 до х=10000 с предельной абсолютной погрешностью, равной . Возможно ли линейное программирование с той же степенью точности?

Решение: Т.к. , то где

Отсюда

, а

Из формулы (1) при n=11 и h=1 получаем:

Т.к. (интерполируем не далее, чем на 1 шаг), то

Окончательно получаем:

Т.о. погрешность интерполирования не превосходит погрешностей исходных данных!

Линейное интерполирование (h=1) возможно.

Интерполяционные формулы Ньютона используют лишь значения функций, лежащие лишь по одну сторону от выбранного начального значения Для интерполирования в середине таблицы удобно применять формулы, содержащие как последующие, так и предшествующие значения функций по отношению к начальному ее значению.

При этом используются центральные разности

Интерполяционные формулы, построенные с помощью центральных разностей - это формулы Гаусса, Стирлинга, Бесселя.

 







Дата добавления: 2015-09-18; просмотров: 538. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Седалищно-прямокишечная ямка Седалищно-прямокишечная (анальная) ямка, fossa ischiorectalis (ischioanalis) – это парное углубление в области промежности, находящееся по бокам от конечного отдела прямой кишки и седалищных бугров, заполненное жировой клетчаткой, сосудами, нервами и...

Основные структурные физиотерапевтические подразделения Физиотерапевтическое подразделение является одним из структурных подразделений лечебно-профилактического учреждения, которое предназначено для оказания физиотерапевтической помощи...

Почему важны муниципальные выборы? Туристическая фирма оставляет за собой право, в случае причин непреодолимого характера, вносить некоторые изменения в программу тура без уменьшения общего объема и качества услуг, в том числе предоставлять замену отеля на равнозначный...

Метод Фольгарда (роданометрия или тиоцианатометрия) Метод Фольгарда основан на применении в качестве осадителя титрованного раствора, содержащего роданид-ионы SCN...

Потенциометрия. Потенциометрическое определение рН растворов Потенциометрия - это электрохимический метод иссле­дования и анализа веществ, основанный на зависимости равновесного электродного потенциала Е от активности (концентрации) определяемого вещества в исследуемом рас­творе...

Гальванического элемента При контакте двух любых фаз на границе их раздела возникает двойной электрический слой (ДЭС), состоящий из равных по величине, но противоположных по знаку электрических зарядов...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия