Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Погрешность меньше, чем !





 

Мы могли бы получить значение по формулам (29), (30)

Действительно, имеем:

 

Далее находим

Блок-схема программы построения кубического сплайна и построения полинома Лагранжа представлены на рис. 4.3 и рис. 4.4

 

Пусть отрезок [ a, b ] разбит на n равных частей и в точках xi (i =0,1,2,..., n; x0 = a, хn = b) некоторая функция принимает значения yi. Для переменной x, принадлежащей части разбиения [ xi-1, xi ] (i =1,..., n), определена функция (кубический многочлен)

 

 

Здесь - шаг разбиения отрезка.

Неизвестные mi определяются рекуррентными соотношениями

n0 = A; mn = В; mi = Limi+1 + Mi (i = n-1, n-2,...,0)

после предварительного вычисления вспомогательных величин Mi, Li

по рекуррентным формулам

L0 = 0, M0 = m0, Mi = Li (Mi-1bi) (i =1,2,..., n -1),

где

Величины А и В должны быть заданы. При построении кубичес­кого сплайна, интерполирующего дифференцируемую функцию y = f (x)

по системе точек, полагают A = f ' (a), S = f ' (b) (краевые условия I типа). Выбор необходимой формулы Si (x) для заданного значения переменной x определяется целым числом i:

В соот­ветствии c условиями задачи для рассмотренного примера в программах принято m0 = 1, mn = 0.

 

 

 


Рис 4.3 Блок-схема программы построения кубического сплайна

Блок – схема программы построения интерполяционного многочлена Лагранжа в комментариях не нуждается.

 

Рис.4.4 Блок - схема программы построения интерполяционного многочлена Лагранжа







Дата добавления: 2015-09-18; просмотров: 463. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Опухоли яичников в детском и подростковом возрасте Опухоли яичников занимают первое место в структуре опухолей половой системы у девочек и встречаются в возрасте 10 – 16 лет и в период полового созревания...

Способы тактических действий при проведении специальных операций Специальные операции проводятся с применением следующих основных тактических способов действий: охрана...

Искусство подбора персонала. Как оценить человека за час Искусство подбора персонала. Как оценить человека за час...

Алгоритм выполнения манипуляции Приемы наружного акушерского исследования. Приемы Леопольда – Левицкого. Цель...

ИГРЫ НА ТАКТИЛЬНОЕ ВЗАИМОДЕЙСТВИЕ Методические рекомендации по проведению игр на тактильное взаимодействие...

Реформы П.А.Столыпина Сегодня уже никто не сомневается в том, что экономическая политика П...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия