Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Оценка погрешности квадратурных формул





 

Рассмотрим интеграл по элементарному отрезку

где х0 Є [xi,xi+1]— некая опорная точка, тогда для приближенного значения интеграла верно

Коэффициенты ξ, η,... зависят от производных f'(х0), f''(х0),....

С другой стороны, любая из рассмотренных квадратурных формул представима в виде

Заменяя в этой формуле значения функций f в точках fi, fi + 1/2, fi + 1 ее разложением по формуле Тейлора, получим

где х0Є [xi,xi+1].

Сравнивая разложения для , легко заметить, что вместе с первым слагаемым совпадают и другие слагаемые до (m - 1) - го порядка, так что ξ = ξ1, η = η1,...

Разность же несовпадающих слагаемых будет, очевидно, оценкой погрешности квадратурной формулы на интервале

,

где v — константа.

Если просуммировать локальные погрешности по всем интервалам [ xi, xi + 1 ], то получим оценку погрешности квадратурной формулы по всему отрезку [a, b]:

где h=(maxhi)/i на неравномерной сетке, или h= (b - a)/n на равномерной. Число m называется порядком точности квадратуры.

Если подынтегральная функция имеет непрерывную вторую производную, то оценка погрешности:

Для формулы прямоугольников

 

 

Для формулы трапеций

 

Если подынтегральная функция имеет непрерывную производную четвертого порядка, то справедлива такая погрешность формулы Симпсона:

 

Заметим, что при интегрировании степенной функции, степень которой не выше трех, квадратурная формула Симпсона дает точный результат.

 

Квадратурные формулы Гаусса

Поскольку формулы Ньютона - Котеса являются интерполяционными, очевидно, что они не могут успешно использоваться для получения формул высокой точности по причине неустойчивости интерполяционного процесса для многочленов высокого порядка. По этой причине обычно используются полиномы степени от нуля до трех (соответственно, формулы прямоугольников со средней точкой, трапеций, Симпсона). Вычисление с их помощью интегралов от функций, обладающих высокой степенью гладкости, например, близким к полиномам высокой степени, представляется нерациональным. В выражение для погрешности этих формул входят первая, вторая или четвертая производные. Погрешность определяется низким порядком производной при высокой степени гладкости интегрируемой функции. Этих недостатков лишены квадратуры Гаусса.

Формулировка задачи построения квадратурных формул, поставленная Гауссом, такова.

Для заданного количества точек, а именно, для (N + 1) точки, найти такое расположение узлов и такие веса ci, чтобы квадратурная формула

была точной для полиномов как можно более высокой степени

Пусть отрезок интегрирования [a,b] непрерывной функции f(x) разбит на n равных частей точками (h – шаг разбиения . Обозначим через S(x) сплайн-функцию, аппроксимирующую подынтегральную функцию f(x).

Пусть на каждой части разбиения [ xi-1,xi ] (i=1,2,…,n) расположено m узлов [ xi1,…,xim ], в которых подынтегральная функция f(x) на каждой i-й части аппроксимируется многочленом степени p, х Є [ xi-1,…,xi ], (i=1,2,…,n). При этом на многочлен накладываются 2 ограничения:

а) значения многочлена и подынтегральной функции равны в узлах интерполяции: Si(xij)=f(xij) (i=1,…,n; j=1,…,m);

б) определенный интеграл от функции на отрезке [ xi-1, xi ] выражается через значения подынтегральной функции f(xij) в узлах в виде их линейной комбинации

(4)

Квадратурные формулы Гаусса для выбранной степени p сплайна будут определены, если из условий а) и б) удастся найти m неизвестных коэффициентов ci и координаты m узлов xij (j=1,…,m).

Задача решается одновременно для всех n частей разбиения отрезка [a,b], если выразить х Є [ xi-1,…,xi ], (i=1,2,…,n) через переменную t Є [-1;1]:

;

Положим ; ;

Тогда (i=1,…,n; j=1,…,m) и соотношение (4) перепишем в виде

(5)

 

Выведем квадратурную формулу Гаусса с тремя узлами (m=3). Для этого необходимо определить шесть величин: . Функция -многочлен степени p, общий вид которого

(6)

Подставив соотношение (6) и (5) и учитывая, что (j=1,2,3,…,p), получим тождество относительно коэффициентов ak (k=0,1,2,…,p):

Шесть неизвестных будут определены однозначно из системы шести уравнений. В общем случае степень p аппроксимирующего многочлена всегда является нечетным числом и связана с числом узлов m соотношением p=2m-1. В частности, для трех узлов имеем многочлен пятой степени.

Множители при ak в левой части тождества вычисляется так:

 

 

Приравняем подобные выражения в левых и правых частях тождества при одинаковых коэффициентах . Получим:

(7)

Эту систему позволяет упростить следующее свойство ее решения: неизвестные ti (i=1,2,…,m) системы 2m уравнений вида

где k=0,1,…,2m-1 являются нулями многочлена Лежандра ; нули принадлежат интервалу (-1;1) и расположены симметрично относительно середины интервала. В нашем случае m=3 и . Находим нули многочлена из уравнения 5t3-3t=0. Подставив корни уравнения , t2=0, в (7), получим систему трех линейных уравнений относительно переменных :

, ,

Теперь подставим найденные значения в соотношение (4):

,

Где , , .

Итак, квадратурная формула Гаусса с тремя узлами записывается в виде

Если подынтегральная функция имеет непрерывную производную шестого порядка, то для оценки погрешности формулы Гаусса с тремя узлами можно использовать неравенство:

 

При вычислении интеграла до достижения заданной точности ε методом двойного пересчета условие окончания вычислений имеет вид

,где k=2m (m – число узлов в квадратурной формуле Гаусса). Полагают, что с точностью ε. Формулы Гаусса обеспечивают высокую точность уже при небольшом количестве узлов.

Блок-схемы решения задачи рассмотренными методами приведены на рис. 5.4 и 5.5.

 

 

Рис. 5.4 Вычисление определенного интеграла по квадратурным формулам прямоугольников, трапеций и Симпсона

 

 

Рис. 5.5 Вычисление определенного интеграла методом двойного пересчета по формуле Гаусса с тремя узлами

 







Дата добавления: 2015-09-18; просмотров: 1476. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Броматометрия и бромометрия Броматометрический метод основан на окислении вос­становителей броматом калия в кислой среде...

Метод Фольгарда (роданометрия или тиоцианатометрия) Метод Фольгарда основан на применении в качестве осадителя титрованного раствора, содержащего роданид-ионы SCN...

Потенциометрия. Потенциометрическое определение рН растворов Потенциометрия - это электрохимический метод иссле­дования и анализа веществ, основанный на зависимости равновесного электродного потенциала Е от активности (концентрации) определяемого вещества в исследуемом рас­творе...

Классификация холодных блюд и закусок. Урок №2 Тема: Холодные блюда и закуски. Значение холодных блюд и закусок. Классификация холодных блюд и закусок. Кулинарная обработка продуктов...

ТЕРМОДИНАМИКА БИОЛОГИЧЕСКИХ СИСТЕМ. 1. Особенности термодинамического метода изучения биологических систем. Основные понятия термодинамики. Термодинамикой называется раздел физики...

Травматическая окклюзия и ее клинические признаки При пародонтите и парадонтозе резистентность тканей пародонта падает...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия