Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Интерполяционная формула Лагранжа





Для произвольно заданных узлов интерполирования (в том числе и для неравноотстоящих узлов) применяется интерполяционная формула Лагранжа.

Пусть на отрезке [a, b] задано n+1 значений аргумента и известны значения функций y=f(x):

Требуется построить полином степени не выше n, имеющий в заданных узлах , те же значения, что и функция f(x), т.е. такой,

 

Рис. 4.2 Построение полинома

что

Рассмотрим частную задачу: построить полином , такой, чтобы = 0

при и при

Т.е. (13)

Такой полином имеет вид:

(14)

При в силу условия (13),

поэтому

И

В результате получаем:

(15)

Будем теперь искать интерполяционный полином в виде

Этот полином имеет вид:

(16)

Подставляя (15) в (16), получаем:

(17)

Это и есть интерполяционная формула Лагранжа

 

При n=1 имеем:

- уравнение прямой,

проходящей через 2 заданные точки: (

При n=2 получаем уравнение параболы, проходящей через три точки:

 

(точки

Пример: Для функции построить интерполяционный полином Лагранжа, выбрав узлы:

Решение: Вычисляем

По формуле (17) получаем:

Точность не велика, т.к. синусоиду мы интерполируем квадратичной параболой.

 

Оценка погрешности интерполяционной формулы Лагранжа

 

(18)

где

 

Пример: с какой точностью можно вычислить с помощью интерполяционной формулы Лагранжа для функции , выбрав узлы интерполирования Три точки n=2.

Решение:имеем

Отсюда (т.к.

Из формулы (18) получаем:







Дата добавления: 2015-09-18; просмотров: 469. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Ганглиоблокаторы. Классификация. Механизм действия. Фармакодинамика. Применение.Побочные эфффекты Никотинчувствительные холинорецепторы (н-холинорецепторы) в основном локализованы на постсинаптических мембранах в синапсах скелетной мускулатуры...

Шов первичный, первично отсроченный, вторичный (показания) В зависимости от времени и условий наложения выделяют швы: 1) первичные...

Предпосылки, условия и движущие силы психического развития Предпосылки –это факторы. Факторы психического развития –это ведущие детерминанты развития чел. К ним относят: среду...

Кран машиниста усл. № 394 – назначение и устройство Кран машиниста условный номер 394 предназначен для управления тормозами поезда...

Приложение Г: Особенности заполнение справки формы ву-45   После выполнения полного опробования тормозов, а так же после сокращенного, если предварительно на станции было произведено полное опробование тормозов состава от стационарной установки с автоматической регистрацией параметров или без...

Измерение следующих дефектов: ползун, выщербина, неравномерный прокат, равномерный прокат, кольцевая выработка, откол обода колеса, тонкий гребень, протёртость средней части оси Величину проката определяют с помощью вертикального движка 2 сухаря 3 шаблона 1 по кругу катания...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия