Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Интерполяционная формула Лагранжа





Для произвольно заданных узлов интерполирования (в том числе и для неравноотстоящих узлов) применяется интерполяционная формула Лагранжа.

Пусть на отрезке [a, b] задано n+1 значений аргумента и известны значения функций y=f(x):

Требуется построить полином степени не выше n, имеющий в заданных узлах , те же значения, что и функция f(x), т.е. такой,

 

Рис. 4.2 Построение полинома

что

Рассмотрим частную задачу: построить полином , такой, чтобы = 0

при и при

Т.е. (13)

Такой полином имеет вид:

(14)

При в силу условия (13),

поэтому

И

В результате получаем:

(15)

Будем теперь искать интерполяционный полином в виде

Этот полином имеет вид:

(16)

Подставляя (15) в (16), получаем:

(17)

Это и есть интерполяционная формула Лагранжа

 

При n=1 имеем:

- уравнение прямой,

проходящей через 2 заданные точки: (

При n=2 получаем уравнение параболы, проходящей через три точки:

 

(точки

Пример: Для функции построить интерполяционный полином Лагранжа, выбрав узлы:

Решение: Вычисляем

По формуле (17) получаем:

Точность не велика, т.к. синусоиду мы интерполируем квадратичной параболой.

 

Оценка погрешности интерполяционной формулы Лагранжа

 

(18)

где

 

Пример: с какой точностью можно вычислить с помощью интерполяционной формулы Лагранжа для функции , выбрав узлы интерполирования Три точки n=2.

Решение:имеем

Отсюда (т.к.

Из формулы (18) получаем:







Дата добавления: 2015-09-18; просмотров: 469. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Патристика и схоластика как этап в средневековой философии Основной задачей теологии является толкование Священного писания, доказательство существования Бога и формулировка догматов Церкви...

Основные симптомы при заболеваниях органов кровообращения При болезнях органов кровообращения больные могут предъявлять различные жалобы: боли в области сердца и за грудиной, одышка, сердцебиение, перебои в сердце, удушье, отеки, цианоз головная боль, увеличение печени, слабость...

Вопрос 1. Коллективные средства защиты: вентиляция, освещение, защита от шума и вибрации Коллективные средства защиты: вентиляция, освещение, защита от шума и вибрации К коллективным средствам защиты относятся: вентиляция, отопление, освещение, защита от шума и вибрации...

Машины и механизмы для нарезки овощей В зависимости от назначения овощерезательные машины подразделяются на две группы: машины для нарезки сырых и вареных овощей...

Классификация и основные элементы конструкций теплового оборудования Многообразие способов тепловой обработки продуктов предопределяет широкую номенклатуру тепловых аппаратов...

Именные части речи, их общие и отличительные признаки Именные части речи в русском языке — это имя существительное, имя прилагательное, имя числительное, местоимение...

Studopedia.info - Студопедия - 2014-2024 год . (0.007 сек.) русская версия | украинская версия