Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Вспомогательные материалы





1. Пример выполнения работы (пункт 1)

Пусть задана функция y = sin x на интервале [ 1.15, 1.19 ]

 

X 1.15 1.16 1.17 1.18 1.19
Y 0.9128 0.9168 0.9208 0.9426 0.9284

 

При задании с шагом 0.2 таблица примет вид:

 

X 1.15 1.17 1.19
Y 0.9128 0.9208 0.9284

 

Интерполяционный полином Лагранжа для трех узлов имеет вид

Вычислим по данной формуле значение в точке x = 1.16. Имеем:

x(0) = 1.15; x(1) = 1.17; x(2) = 1.19; y(0) =0.9128; y(1) = 0.9208; y(2) = 0.9284

Подставляя данные в выражение для L(x), получаем

 

Полученное значение точно совпадает с табличным для x = 1.16.

 

Оценим погрешность интерполирования по формуле (2). Имеем n = 2.

f (n + 1) = -cos (x)

Максимальное значение косинуса не превосходит 1. Следовательно, М n +1 равно 1.

= 0.5 * 10 - 6.

Следовательно, результат интерполирования совпадает с точным значением функции до пяти знаков после запятой.

Разработка программы на Mathcadе трудностей не представляет.

 

2. Пункт 2 задания выполняется аналогично.

3. Пример Mathcad – программы для построения кубического сплайна приведен ниже.

 

 

Контрольные вопросы

1.Чему равно значение интерполяционного полинома в узловых точках?

2. Какова максимальная степень многочлена Лагранжа?

3. Какова максимальная степень многочлена Ньютона?

4. Как оценивается погрешность интерполяции?

5. В чем состоит различие сплайн – интерполирования от обычной интерполяции?


Раздел 5

 







Дата добавления: 2015-09-18; просмотров: 587. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Прием и регистрация больных Пути госпитализации больных в стационар могут быть различны. В цен­тральное приемное отделение больные могут быть доставлены: 1) машиной скорой медицинской помощи в случае возникновения остро­го или обострения хронического заболевания...

ПУНКЦИЯ И КАТЕТЕРИЗАЦИЯ ПОДКЛЮЧИЧНОЙ ВЕНЫ   Пункцию и катетеризацию подключичной вены обычно производит хирург или анестезиолог, иногда — специально обученный терапевт...

Ситуация 26. ПРОВЕРЕНО МИНЗДРАВОМ   Станислав Свердлов закончил российско-американский факультет менеджмента Томского государственного университета...

В эволюции растений и животных. Цель: выявить ароморфозы и идиоадаптации у растений Цель: выявить ароморфозы и идиоадаптации у растений. Оборудование: гербарные растения, чучела хордовых (рыб, земноводных, птиц, пресмыкающихся, млекопитающих), коллекции насекомых, влажные препараты паразитических червей, мох, хвощ, папоротник...

Типовые примеры и методы их решения. Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно. Какова должна быть годовая номинальная процентная ставка...

Выработка навыка зеркального письма (динамический стереотип) Цель работы: Проследить особенности образования любого навыка (динамического стереотипа) на примере выработки навыка зеркального письма...

Studopedia.info - Студопедия - 2014-2024 год . (0.012 сек.) русская версия | украинская версия