Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Пример разработки программы для решения задачи численного интегрирования в системе Mathcad





Вычисление по квадратурным формулам прямоугольников, трапеций и Симпсона.

Пример.

Найти приближенные значения интеграла с помощью квадратурных формул прямоугольников, трапеций и Симпсона, если отрезок интегрирования [0;1] разбит на n=2,4,10 равных частей. Оценить величину погрешности полученных результатов в каждом случае.

Решение

Найдем производные подынтегральной функции до четвертого порядка включительно и максимальные абсолютные значения производных второго и четвертого порядка на отрезке [0;1]:

 

 

При n=4 получим следующие погрешности результатов:

 

Расчет функции

В программном блоке можно читать значения переменных, определенных в MathCAD до этого блока. Однако изменить значения этих переменных внутри программного блока невозможно. Все переменные, которым присваиваются значения внутри программного блока, будут локальными переменными, которые недоступны вне блока. Специально объявлять переменные не нужно, достаточно просто присвоить им значения. Если программный блок является телом функции, то он также может читать значения аргументов этой функции.

Программный блок представляет собой группу операторов присваивания и управляющих операторов. Необходимо обратить особое внимание, что все ключевые слова (например, if) в этих операторах обязательно вводятся с помощью панели Programming (Программирование), показанной на рисунке. Их ввод с клавиатуры - ошибка! Открыть панель программирования можно с помощью панели Math,кликнув на кнопке .

В целом правила работы с операторами те же, что и в языке Pascal, отличия касаются способа записи операторов. Разобраться в этом нам поможет таблица1:

Таблица 1. Соответствие программных операторов MathCAD и Pascal

Оператор языка Pascal Оператор MathCAD Комментарий
A:= B Присваивание
Begin оператор1; оператор2; … End Группа, объединяющая несколько операторов в один составной оператор. Для создания группы и добавления в нее новой пустой строчки используется кнопка «Add Line» панели Programming
If условие Then оператор If условие Then Begin оператор1; оператор2; … End оператор if условие     Простой оператор ветвления. Как и в языке Pascal, его действие распространяется на один указанный оператор, который может быть группой операторов. Условием может быть любое логическое выражение, которое может содержать знаки отношения (вместо обычного знака равенства используется знак логического равенства) и логические операторы (находятся на панели Boolean): - Not; - And; - Or; - Xor
If условие Then оператор1 Else оператор2 Полный оператор ветвления
For инд:= нач To кон Do оператор Фиксированный оператор цикла. Индексная переменная принимает значения от начального до конечного с шагом, равным единице. Цикл действует на один указанный оператор, который может быть группой операторов
While условие Do оператор Гибкий оператор цикла с предусловием. Цикл выполняется, пока истинно заданое условие
Нет прямого аналога выражение1 on error выражение2 Специальная операция обработки ошибок. Сначала вычисляется выражение2. Если при этом происходит ошибка, то результатом операции будет выражение1. Если ошибки нет, то результат - выражение2. Пример: Здесь локальная переменная A получает значение 2, переменная B - значение 0,5

 

 

Если функция является программным блоком, то значение, которое возвращает функция, - это обычно значение, вычисленное последним сработавшим оператором блока. Достоинством MathCAD’а является то, что не следуем заботиться об определении типов переменных – MathCAD осуществляет это сам.

Назовем данную функцию fun(x) и присвоим локальной переменной значение заданной функции:

Расчет интеграла по формуле прямоугольников.

 

InSguare(0,1,2) = 1.753

Рассчитаем погрешность интегрирования с помощью функции

 

Расчет интеграла по формуле трапеций.

Аналогично, как в предыдущем примере рассчитываем интеграл, с той лишь разницей, что теперь интеграл будет равен сумме элементарных трапеций, площадь которых хранится в переменной х2.

 

Рассчитаем погрешность с помощью функции:

 

 

 

Расчет интеграла по формуле Симпсона.

Рассчитаем интеграл через полученные значения по формулам прямоугольников и трапеций, используя формулу:

 

 

 

Вычисление по формуле Гаусса с тремя узлами

 

Найти приближенные значения интеграла по квадратурной формуле Гаусса с тремя узлами для n=2(без разбиения отрезка [0;1] на части, h=1). Сравнить полученный результат с результатами вычислений в предыдущем примере.

Решение

Найдем производные подынтегральной функции до шестого порядка включительно, продолжая вычисления из предыдущего примера:

 

С погрешностью, не большей чем 0,001 имеем

,

 

x2=0,5; f(x2)=1,41247

f(x1)=1,46312

f(x3)=2,10203

 

Написание Mathcad-программы для вычисления интеграла по формуле Гаусса комментариев не требует.

 

Контрольные вопросы

1.Что такое квадратурные формулы?

2.Какие квадратурные формулы вы знаете?

3. Какая из квадратурных формул имеет наименьшую погрешность при одинаковом числе разбиений интервала интегрирования?

4.Что дает метод двойного пересчета?

5. Какая из квадратурных формул имеет меньшую погрешность:

- квадратурная формула прямоугольников

- квадратурная формула трапеций?

 








Дата добавления: 2015-09-18; просмотров: 1604. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Ведение учета результатов боевой подготовки в роте и во взводе Содержание журнала учета боевой подготовки во взводе. Учет результатов боевой подготовки - есть отражение количественных и качественных показателей выполнения планов подготовки соединений...

Сравнительно-исторический метод в языкознании сравнительно-исторический метод в языкознании является одним из основных и представляет собой совокупность приёмов...

Концептуальные модели труда учителя В отечественной литературе существует несколько подходов к пониманию профессиональной деятельности учителя, которые, дополняя друг друга, расширяют психологическое представление об эффективности профессионального труда учителя...

ТРАНСПОРТНАЯ ИММОБИЛИЗАЦИЯ   Под транспортной иммобилизацией понимают мероприятия, направленные на обеспечение покоя в поврежденном участке тела и близлежащих к нему суставах на период перевозки пострадавшего в лечебное учреждение...

Кишечный шов (Ламбера, Альберта, Шмидена, Матешука) Кишечный шов– это способ соединения кишечной стенки. В основе кишечного шва лежит принцип футлярного строения кишечной стенки...

Принципы резекции желудка по типу Бильрот 1, Бильрот 2; операция Гофмейстера-Финстерера. Гастрэктомия Резекция желудка – удаление части желудка: а) дистальная – удаляют 2/3 желудка б) проксимальная – удаляют 95% желудка. Показания...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия