Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Задание на работу .





Решить задачу Коши на равномерной сетке. Решение найти в четырех узловых точках

(шаг h1 равен [ b - a ] / 4). Найти решение в тех же узлах, ведя расчет с уменьшенным вдвое шагом. Вычислить погрешности приближений при расчете с шагом h2 = h1 / 2

Задачу решить с помощью системы MATHCAD:

а) методом Эйлера;

б) методом Эйлера - Коши;

в) методом Рунге - Кутта.

 

Варианты лабораторных работ.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.


Вспомогательные материалы.

 

Пример

Решить задачу Коши

на равномерной сетке с шагом h = 0.1. Решение найти в четырех узловых точках.

С помощью программы найти решение в тех же узлах, ведя расчет с уменьшенным вдвое шагом. Вычислить погрешности приближений при расчете с шагом h = 0.05

Задачу решить:

а) методом Эйлера;

б) методом Эйлера - Коши;

в) методом Рунге - Кутта.

 

Решение. Здесь f (x,y) = x + y; m = 4; a = 0; b = 0.4;

h = (b - a) / m = 0.4 /4 = 0.1

а) Используя рекуррентные формулы

x0 = 0; y0 = 1; xi = x i - 1 + 0.1; y i = y i - 1 + 0.1(x i - 1 + y i - 1) i = (1, 2, 3, 4),

последовательно находим

при i = 1: x1 = 0.1; y1 = 1 + 0.1(0 + 1) = 1.1;

при i = 2; x2 = 0.2; y2 = 1.1 + 0.1(0.1 + 1.1) = 1.22;

при i = 3; x3 = 0.3; y3 = 1.22 + 0.1(0.2 + 1.22) = 1.362;

при i = 4; x4 = 0.4; y4 = 1.362 + 0.1(0.3 + 1.362) = 1.5282.

С помощью программы находим решение при h = 0.05.

Обозначив, d i = | y i (h) - y i (h/2) | сведем результаты вычислений в таблицу

 

I x i y i (h) y i (h / 2) d
  0.1 1.1 1.105 0.005
  0.2 1.22 1.231012 0.011012
  0.3 1.362 1.380119 0.018191
  0.4 1.5282 1.554911 0.028738

б) Формулы (7) в нашем случае принимают вид

 

k1[ i - 1] = h (xi-1 + yi-1), k2[ i - 1 ] = h (xi-1 + h + yi-1 + k1[ i - 1])

xi =xi-1 + h, yi = yi-1 + (1/2)[ k1[i -1] + k2[i -1]] (i = 1, 2, 3, 4).

 

Полагая x 0 = 0, y 0 = 1, последовательно находим

 

при i = 1:

 

k1[ 0 ] =0.1(0 + 1) = 0.1; k2[ 0 ] = 0.1(0 + 0.1 + 1 + 0.1) = 0.12;

x1= 0 + 0.1 = 0.1; y1 = 1 + (1/2)(0.1 + 0.12) = 1.11;

 

при i = 2:

 

k1[ 1 ] =0.1(0.1 + 1.11) = 0.121; k2[ 1 ] = 0.1(0.1+0.1+1.11+0.121) = 0.1431;

x1= 0.1 + 0.1 = 0.2; y1 = 1.11+(1/2)(0.121+0.143) = 1.2425.

 

Далее получаем при i = 3: x 3 = 0.3; y 3 = 1.398465;

При i = 4: x 4 = 0.4; y 4 = 1.581804.

С помощью программы проводим вычисления с половинным шагом. Результаты заносим в таблицу, аналогичную таблице пункта а).

 

в) Из формул (8) получаем

 

k1[ i - 1] = h (xi-1 + yi-1), k2[ i - 1 ] = h (xi-1 + (1/2)h + yi-1 +(1/2) k1[ i - 1])

k3[ i - 1 ] = h (xi-1 + (1/2)h + yi-1 +(1/2) k2[ i - 1])

k4[ i - 1 ] = h (xi-1 + h + yi-1 + k3[ i - 1])

xi =xi-1 + h, yi = yi-1 + (1/6)[ k1[i -1] + 2k2[i -1] + 2k3[i -1] + k4[ i - 1 ]]

для i = 1, 2, 3, 4.

 

Полагая x 0 = 0, y 0 = 1, последовательно находим

 

при i = 1:

 

k1[ 0 ] =0.1(0 + 1) = 0.1; k2[ 0 ] = 0.1(0 + 0.05 + 1 + 0.05) = 0.11;

k3[ 0 ] = 0.1(0 + 0.05 + 1 + 0.055) = 0.1105

k4[ 0 ] = 0.1(0 + 0.1 + 1 + 0.1105) = 0.121050

x1= 0 + 0.1 = 0.1; y1 = 1 +(1/6)(0.1 + 2*0.11+2*0.1105+

+0.12105) = 1.110342;

при i = 2:

 

k1[ 1 ] =0.1(0.1 + 1.110342) = 0.1210342;

k2[ 1 ] = 0.1(0.1 + 0.05 + 1.110342 + 0.0605171) = 0.1326385;

k3[ 1 ] = 0.1(0.1 + 0.05 + 1.110342 + 0.06604295) = 0.1326385;

k4[ 1 ] = 0.1(0.1 + 0.1 + 1.110342 + 0.1326385) = 0.1442980.

x2= 0.1 + 0.1 = 0.2;

y2 = y1 +(1/6) [ k1[1] + 2 k2[1] +2 k3[1] + k4[1]] = 1.242805;

 

Далее получаем при i = 3 x3 = 0.3; y3 = 1.399717;

i = 4 x4 = 0.4; y4 = 1.583648;

 

С помощью программы проводим вычисления с половинным шагом. Результаты заносим в таблицу.

 

2. Блок - схема численного решения задачи Коши для дифференциального уравнения первого порядка методами Эйлера, Эйлера - Коши и Рунге - Кутта

 

Методом   Рунге -   Кутта
Методом   Эйлера -   Коши
Методом Эйлера
Вычисление приближенного решения на одном шаге

 

3. Пример программы для функции y / = x + y

(пример приведен для удобства разработки программы на MATHCADе студентами, привыкшими работать в ПАСКАЛЕ))

program DifEquationsFirstOrder;

{*******************************************************}

uses Crt;

const

c:array[1..4] of real = (0,0.5,0.5,1);

type

coef = array[0..4] of real;

var

i,j,m:integer;

a,b,h,x,y,y1,y2,y3:real;

k0,k:coef;

ch:char;

{-----------------------SUBROUTINES---------------------}

{ Y = F (x,y) (f = x+y) }

function f(x,y:real):real;

BEGIN

f:= x + y

END;

{-------------------------------------------------------}

procedure Pausa;

BEGIN

WRITELN;WRITELN ('Для продолжения нажмите любую клавишу...');

REPEAT ch:= readkey UNTIL ch <> '';

END;

{------------------ОСНОВНАЯ ПРОГРАММА-------------------}

BEGIN

ClrScr;

WRITELN ('Введите значения концов отрезка [a,b]');

READ (a,b);

WRITELN ('Введите начальное значение функции y0 при x=x0 ');

READ (y);

WRITELN (' Введите число значений функции на промежутке [a,b]');

READ (m);

x:= a; h:= (b-a) / m; y1:= y; y2:= y; y3:=y;

WRITELN (' Метод Эйлера Метод Э.-Коши Метод Р.-Кутта');

WRITELN ('x=',x:5:2,' y1=',y:9:6,' y2=',y2:9:6,' y3=',y3:9:6);

FOR i:= 1 TO m DO

BEGIN

y1:= y1 + h*f(x,y1);

FOR j:=1 TO 2 DO

k0[j]:=h*f(x+2*c[j]*h, y2+2*c[j]*k0[j-1]);

y2:= y2+(k0[1]+k0[2]) / 2;

FOR j:=1 TO 4 DO

k[j]:= h*f(x+c[j]*h, y3+ c[j]*k[j-1]);

y3:= Y3+ (k[1]+2*k[2]+2*k[3]+k[4]) / 6;

x:= x+h;

WRITELN ('x=',x:5:2,' y1=',y1:9:6,' y2=',y2:9:6,' y3=',y3:9:6);

END;

PAUSA;

END.

 

 







Дата добавления: 2015-09-18; просмотров: 375. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Задержки и неисправности пистолета Макарова 1.Что может произойти при стрельбе из пистолета, если загрязнятся пазы на рамке...

Вопрос. Отличие деятельности человека от поведения животных главные отличия деятельности человека от активности животных сводятся к следующему: 1...

Расчет концентрации титрованных растворов с помощью поправочного коэффициента При выполнении серийных анализов ГОСТ или ведомственная инструкция обычно предусматривают применение раствора заданной концентрации или заданного титра...

Метод архитекторов Этот метод является наиболее часто используемым и может применяться в трех модификациях: способ с двумя точками схода, способ с одной точкой схода, способ вертикальной плоскости и опущенного плана...

Примеры задач для самостоятельного решения. 1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P   1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P...

Дизартрии у детей Выделение клинических форм дизартрии у детей является в большой степени условным, так как у них крайне редко бывают локальные поражения мозга, с которыми связаны четко определенные синдромы двигательных нарушений...

Studopedia.info - Студопедия - 2014-2026 год . (0.01 сек.) русская версия | украинская версия