Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Теорема.





Пусть функция g (x) имеет на отрезке [a, b] непрерывную производную и выполнены два условия:

1) q < 1 при x [a, b];

2) значения функции y = g(х) принадлежат отрезку [a,b] для любого x [a, b]

Тогда при любом выборе начального приближения x(0) [a, b] процесс итераций сходится к единственному корню уравнения (1) на отрезке [a, b]

Оценка погрешности k -го приближения x (k) к корню такова:

, (8)

где

Укажем теперь один из способов преобразования уравнения

f(x) = 0 (9)

к виду x = g(x), допускающему применение метода итераций, сходящихся к решению уравнения (9).

Для любого числа уравнение (9) равносильно уравнению (5), где

g (x) = x + f(x).

Предположим, что производная f ' (x) > 0 и непрерывна

на [ a,b ]. Пусть , ;

положим

,

и рассмотрим функцию

. (10)

Для функции, определенной формулой (10), выполняются достаточные условия сходимости метода итераций решения уравнения (9). В частности, условие 1) теоремы следует из неравенств

0 < m f ' (x) M,

0 g ' (x) = 1 - (1/M) f ' (x) 1 - m/M = g < 1 .

Замечание1. Если окажется, что производная f ' (x) отрицательна на отрезке [ a, b], то уравнение (1) можно заменить на равносильное уравнение -f(x) = 0 и использовать указанное преобразование.

Замечание 2. Если вычисление точного числа затруднительно, то можно заменить его произвольным числом М1> M. Однако при большом М1 число q = 1 - m / М1 ближе к единице и процесс итераций сходится медленнее.

Замечание 3. При нахождении корня уравнения (1) с заданной точностью или при оценке погрешности k-го приближения можно, не вычисляя точного значения числа

q = max | g ' (x) |,ограничиться следующей практической рекомендацией:

при 0 < q (1/2) (11)

при (1/2) < q < 1. (12)

Блок – схема алгоритма, реализующего итерационный метод, приведена на рис. 3.2.

 


 


  >
<
<
b = x1
d = b - a
a = x1
0
x1 = (a + b ) / 2

 

 

 


Рис 3.3 Блок – схема алгоритма, реализующего метод половинного деления

 







Дата добавления: 2015-09-18; просмотров: 511. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Мотивационная сфера личности, ее структура. Потребности и мотивы. Потребности и мотивы, их роль в организации деятельности...

Классификация ИС по признаку структурированности задач Так как основное назначение ИС – автоматизировать информационные процессы для решения определенных задач, то одна из основных классификаций – это классификация ИС по степени структурированности задач...

Внешняя политика России 1894- 1917 гг. Внешнюю политику Николая II и первый период его царствования определяли, по меньшей мере три важных фактора...

Неисправности автосцепки, с которыми запрещается постановка вагонов в поезд. Причины саморасцепов ЗАПРЕЩАЕТСЯ: постановка в поезда и следование в них вагонов, у которых автосцепное устройство имеет хотя бы одну из следующих неисправностей: - трещину в корпусе автосцепки, излом деталей механизма...

Понятие метода в психологии. Классификация методов психологии и их характеристика Метод – это путь, способ познания, посредством которого познается предмет науки (С...

ЛЕКАРСТВЕННЫЕ ФОРМЫ ДЛЯ ИНЪЕКЦИЙ К лекарственным формам для инъекций относятся водные, спиртовые и масляные растворы, суспензии, эмульсии, ново­галеновые препараты, жидкие органопрепараты и жидкие экс­тракты, а также порошки и таблетки для имплантации...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия