Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Решение систем линейных алгебраических уравнений методом итераций





 

Рассмотрим систему линейных алгебраических уравнений

(9)

Если все диагональные элементы , то систему (1) можно представить в приведенном виде

(10)

где

Введем обозначения

Тогда система (2) запишется в виде

(11)

В качестве начального приближения возьмем вектор b и подставим его в уравнение (11). Получим .Продолжая процесс, получим последовательности приближений:

- первое приближение

-второе приближение (12)

.........

- (k+1)-ое приближение.

Если существует предел x последовательности векторов то, переходя к пределу в равенстве при , убеждаемся, что x является решением уравнения (11), т.е.

Достаточное условие сходимости итерационного процесса:

Теорема. Если какая-нибудь норма матрицы А меньше единицы: , то уравнение (11) имеет единственное решение x, к которому стремится последовательность итераций (12) при любом выборе начального приближения.

Под нормой матрицы понимают следующие выражения:

(m-норма) сумма модулей элементов строки

(l-норма) сумма модулей элементов столбца

(k-норма)

Пример: для матрицы

 

В расчетах полагают . Погрешности приближенного решения уравнения (11) на k-ом шаге оценивают неравенством

, (13)

где - норма вектора X

m-норма или кубическая норма

l-норма или октаэдрическая норма

Введем обозначения

Тогда система (2) запишется в виде

(11)

В качестве начального приближения возьмем вектор b и подставим его в уравнение (11). Получим .Продолжая процесс, получим последовательности приближений:

- первое приближение

-второе приближение (12)

.........

- (k+1)-ое приближение.

Если существует предел x последовательности векторов то, переходя к пределу в равенстве при , убеждаемся, что x является решением уравнения (11), т.е.

Достаточное условие сходимости итерационного процесса:

Теорема. Если какая-нибудь норма матрицы А меньше единицы: , то уравнение (11) имеет единственное решение x, к которому стремится последовательность итераций (12) при любом выборе начального приближения.

 

 

 

Рис. 2.1 Блок-схема решения системы линейных алгебраических уравнений

Под нормой матрицы понимают следующие выражения:

(m-норма) сумма модулей элементов строки

(l-норма) сумма модулей элементов столбца

(k-норма)

Пример: для матрицы

В расчетах полагают . Погрешности приближенного решения уравнения (11) на k-ом шаге оценивают неравенством

, (13)

где - норма вектора X

m-норма или кубическая норма

l-норма или октаэдрическая норма

k-норма или сферическая норма.

Из неравенства (13) можно получить оценку числа итераций k, необходимых для обеспечения заданной точности e.

Отклонение приближения от решения x по норме не будет превышать e, если

(14)

 

Для вывода (14) достаточно рассмотреть равенства:

; ; ;

;

; и т.д.

Далее .

И учитывая, что , т.к. норма .

В неравенствах (13) и (14) используются согласованные нормы для матриц и векторов, т.е. m и l-нормы.

Неравенство (14) дает завышенную оценку числа итераций k. Из (14) можно получить удобное условие, позволяющее принять приближение в качестве решения с точностью e.

(15)

Пример:Найти решение системы уравнений

методом итераций с точностью 10-2.

Решение:Приведем систему к виду (10)

Запишем последовательность итераций

(16)

Для приведенной матрицы достаточное условие ходимости выполняется по m-норме:

В качестве начального приближения возьмем вектор-столбец свободных членов приведенной системы .

Число итераций для достижения заданной точности определяем из неравенства (13) , которое запишем так:

, действительно:

.

; т.к. то ; .

Вычислим теперь три последовательных приближения по формулам (15) и оценим погрешность каждого результата, используя неравенство (13) в виде:

.

Первое приближение:

Следовательно, дает значение корня ξ с погрешностью, не превышающей величины .

 

Далее последовательно находим:

 

;

 

 

Третья итерация:

 

;

Заданная точность достигается за 5 шагов. Точное решение .

Ниже приведена блок – схема алгоритма решения системы линейных алгебраических уравнений методом итераций.

 


           
   
 
 
 
   


 


                 
   
 
 
 
   
 
 
   
Рис2.2 Блок – схема алгоритма решения системы линейных алгебраических уравнений методом итераций

Лабораторная работа 2







Дата добавления: 2015-09-18; просмотров: 684. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Тема: Составление цепи питания Цель: расширить знания о биотических факторах среды. Оборудование:гербарные растения...

В эволюции растений и животных. Цель: выявить ароморфозы и идиоадаптации у растений Цель: выявить ароморфозы и идиоадаптации у растений. Оборудование: гербарные растения, чучела хордовых (рыб, земноводных, птиц, пресмыкающихся, млекопитающих), коллекции насекомых, влажные препараты паразитических червей, мох, хвощ, папоротник...

Типовые примеры и методы их решения. Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно. Какова должна быть годовая номинальная процентная ставка...

Разновидности сальников для насосов и правильный уход за ними   Сальники, используемые в насосном оборудовании, служат для герметизации пространства образованного кожухом и рабочим валом, выходящим через корпус наружу...

Дренирование желчных протоков Показаниями к дренированию желчных протоков являются декомпрессия на фоне внутрипротоковой гипертензии, интраоперационная холангиография, контроль за динамикой восстановления пассажа желчи в 12-перстную кишку...

Деятельность сестер милосердия общин Красного Креста ярко проявилась в период Тритоны – интервалы, в которых содержится три тона. К тритонам относятся увеличенная кварта (ув.4) и уменьшенная квинта (ум.5). Их можно построить на ступенях натурального и гармонического мажора и минора.  ...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия