Новые открытия Нулика
(Нулик – отряду РВТ)
Здравствуйте, ребята! Ну и работу вы нам задали! Теперь мы только и делаем, что играем в шахматы. Каждый сам смастерил себе доску и фигуры. Играем с утра до вечера – то друг с другом, а то и каждый сам с собой. Но я все‑таки успел сделать открытие: по шахматной доске сразу видно, что Карликания и Аль‑Джебра друзья. Ведь каждая шахматная клетка имеет свое обозначение, которое состоит из цифр и букв. Например, е5, а4, d8. Разве это не доказательство дружбы? Задачу с зернами все‑таки решили проверить. Конечно, без риса. Просто все стали писать на своих досках, сколько надо положить рисинок на каждую клетку: 1, 2, 4, 8, 16, 32, 64, 128… Когда заполнили первый ряд, выяснилось, что одни пишут слева направо, а другие справа налево. Стали спорить, как надо писать. Положили две доски одну под другой. На одной числа написаны внизу, слева направо, на другой – вверху, справа налево. Числа, одинаково отстоящие от края, оказались друг против друга. Прямо как на палке у фокусника! Я попробовал сложить каждую пару, но одинаковых чисел не получилось. Понятно: ведь прогрессия‑то не арифметическая, а геометрическая! Тогда я их перемножил и сделал второе открытие: все произведения оказались совершенно одинаковые: 1 Х 128 = 128; 2 X 64 = 128; 4 X 32 = 128; 8 X 16 = 128. Да, теперь я уже не тот Нулик, что прежде. Меня и вправду не узнать. А все ваши письма! Дальше считать зерна никто не захотел – кому же охота писать такие огромные числа? Но один Нулик задал интересный вопрос: если на шестьдесят четвертую клетку надо положить девять с лишним квинтиллионов зерен, то сколько всего зерен будет на доске, если, конечно, заполнить все клетки? – Что тут думать! – сказал другой Нулик. – Всего на доске будет зерен два в шестьдесят третьей степени. То есть вот эти девять квинтиллионов. – Ничего подобного, – возразил третий, – девять квинтиллионов будет только на последней клетке, а на всей доске во много раз больше. Они заспорили, а я снова посмотрел на свою шахматную доску, где в первом ряду написана геометрическая прогрессия: 1, 2, 4, 8, 16, 32, 64, 128. После треугольника Паскаля я вообще стал очень внимательно рассматривать числа – все время ищу закономерности! Вот и сейчас сложил первый член прогрессии со вторым: 1 + 2 = 3. Сумма их оказалась на единицу меньше третьего члена – четверки. Потом я сложил 1 + 2 + 4. Получилось семь. А это на единицу меньше восьми. 1 + 2 + 4 + 8 = 15. И это тоже меньше шестнадцати на единицу. Выходит, сумма всех предыдущих членов этой геометрической прогрессии меньше последующего всегда на единицу. А это значит, что на шестидесяти трех клетках шахматной доски будет столько же зерен, сколько на последней, шестьдесят четвертой, только на одно зернышко меньше. А всего на доске зерен будет в два раза больше, чем на последней клетке, минус единица: 2 * 2 – 1. А это ведь все равно что 2 – 1. Так я сделал третье открытие. И для этого мне не понадобилось ни писать всю прогрессию до конца, ни умножать девять квинтиллионов с хвостиком на два. Хорошая штука алгебра! Нулик‑Шахматист.
|