Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Двухцентровые молекулярные орбитали




В методе молекулярных орбиталей для описания распределения электронной плотности в молекуле используется представление о молекулярной орбитали (подобно атомной орбитали для атома). Молекулярные орбитали - волновые функции электрона в молекуле или другой многоатомной химической частице. Каждая молекулярная орбиталь (МО), как и атомная орбиталь (АО), может быть занята одним или двумя электронами. Состояние электрона в области связывания описывает связывающая молекулярная орбиталь, в области разрыхления - разрыхляющая молекулярная орбиталь. Распределение электронов по молекулярным орбиталям происходит по тем же правилам, что и распределение электронов по атомным орбиталям в изолированном атоме. Молекулярные орбитали образуются при определенных комбинациях атомных орбиталей. Их число, энергию и форму можно вывести исходя из числа, энергии и формы орбителей атомов, составляющих молекулу.

В общем случае, волновые функции, отвечающие молекулярным орбиталям в двухатомной молекуле, представляют как сумму и разность волновых функций атомных орбитале, умноженных на некоторые постоянные коэффициенты, учитывающие долю атомных орбиталей каждого атома в образовании молекулярных орбиталей (они зависят от электроотрицательности атомов):

φ(АВ) = с1ψ(А) ± с2ψ(В)

Этот метод вычисления одноэлектронной волновой функции называют "молекулярные орбитали в приближении линейной комбинации атомных орбиталей" (МО ЛКАО).

Так, при образовании иона Н2+ или молекулы водорода Н2 из двух s-орбиталей атомов водорода формируются две молекулярные орбитали. Одна из них связывающая (ее обозначают σсв), другая - разрыхляющая (σ*).

Энергии связывающих орбиталей ниже, чем энергии атомных орбиталей, использованных для их образования. Электроны, заселяющие связывающие молекулярные орбитали, находятся преимущественно в пространстве между связываемыми атомами, т.е. в так называемой области связывания. Энергии разрыхляющих орбиталей выше, чем энергии исходных атомных орбиталей. Заселение разрыхляющих молекулярных орбиталей электронами способствует ослаблению связи: уменьшению ее энергии и увеличению расстояния между атомами в молекуле. Электроны молекулы водорода, ставшие общими для обоих связываемых атомов, занимают связывающую орбиталь.

Комбинация р-орбиталей приводит к двум типам молекулярных орбиталей. Из двух р-орбиталей взаимодействующих атомов, направленных вдоль линии связи, образуются связывающая σсв- и разрыхляющая σ*-орбитали. Комбинации р-орбиталей, перпендикулярных линий связи, дают две связывающих π- и две разрыхляющих π*-орбитали. Используя при заселении электронами молекулярных орбиталей те же правила, что при заполнении атомных орбиталей в изолированных атомах, можно определить электронное строение двухатомных молекул, например O2 и N2 (рис. 35).

Из распределения электронов по молекулярным орбиталям можно рассчитать порядок связи (ω). Из числа электронов, расположенных на связывающих орбиталях, вычитают число электронов, находящихся на разрыхляющих орбиталях, и результат делят на 2n (в расчете на n связей):

ω = [N1(число e− на связывающих МО) − N2(число e− на разрыхляющих МО)] / 2 n

Из энергетической диаграммы видно, что для молекулы Н2 ω = 1.

Метод молекулярных орбиталей дает те же значения порядка химической связи, что и метод валентных связей, для молекул О2 (двойная связь) и N2 (тройная связь). В то же время он допускает нецелочисленные значения порядка связи. Это наблюдается, например, при образование двухцентровой связи одним электроном (в ионе Н2+). В этом случае ω = 0,5. Величина порядка связи прямо влияет на ее прочность. Чем выше порядок связи, тем больше энергия связи и меньше ее длина:

Молекула Порядок связи Энергия связи, кДж/моль Длина связи, пм
O2 −498
N2 −945

Закономерности в изменениях порядка, энергии и длины связи можно проследить на примерах молекулы и молекулярных ионов кислорода.

Комбинация орбиталей двух разных атомов с образованием молекулы возможно только при близости их энергий, при этом атомные орбитали атома большей электроотрицательности на энергетической диаграмме всегда располагаются нижНапример, при образовании молекулы фтороводорода невозможна комбинация 1s-АО атома водорода и 1s-АО или 2s-АО атома фтора, так как они сильно различаются по энергии. Ближе всего по энергии 1s-АО атома водорода и 2p-АО атома фтора. Комбинация этих орбиталей вызывает появление двух молекулярных орбиталей: связывающая σсв и разрыхляющая σ*.

Оставшиеся 2р-орбитали атома фтора не могут комбинироваться с 1s-АО атома водорода, так как они имеют разную симметрию относительно межъядерной оси. Они образуют несвязывающие π0-МО, имеющие такую же энергию, что и исходные 2р-орбитали атома фтора.

Не участвующие в ЛКАО s-орбитали атома фтора образуют несвязывающие σ0-МО. Заселение электронами несвязывающих орбиталей не способствуют и не препятствуют образованию связи в молекуле. При расчете порядка связи их вклад не учитывается.

Многоцентровые молекулярные орбитали

В многоцентровых молекулах молекулярные орбитали являются многоцентровыми, так они представляют собой линейную комбинацию орбиталей всех атомов, участвующих в образовании связей. В общем случае молекулярные орбитали не локализованы, то есть электронная плотность, отвечающая каждой орбитали, более или менее равномерно распределена по всему объему молекулы. Однако с помощью математических преобразований можно получить локализованные молекулярные орбитали определенной формы, соответствующие отдельным двух- или трехцентровым связям или неподеленным электронам.

Простейшим примером трехцентровой связи служит молекулярный ион Н3+. Из трех s-орбиталей атомов водорода образуются три молекулярные орбитали: связывающая, несвязывающая и разрыхляющая . Пара электронов заселяет связывающую орбиталь. Образующаяся связь является двухэлектронной трехцентровой; порядок связи равен 0,5.

 

Химические частицы, содержащие неспаренные электроны, обладают парамагнитными свойствами (в отличие от диамагнитных свойств химических частиц, все электроны в которых спарены). Парамагнетиками являются все вещества, состоящие из химических частицы с нечетным числом электроном, например NO. Метод молекулярных орбиталей позволяет выявить парамагнетики среди веществ, состоящих из химических частиц с четным числом электронов, например О2, в молекуле которого два неспаренных электрона находятся на двух разрыхляющих π*-орбиталях.

Химические частицы с неспаренными электронами на внешних орбиталях называют свободными радикалами. Они обладают парамагнетизмом и высокой реакционной способностью. Неорганические радикалы с локализованными неспаренными электронами, например . Н, . NН2, обычно являются короткоживущими. Они образуются при фотолизе, радиолизе, пиролизе, электролизе. Для их стабилизации используют низкие температуры. Короткоживущие радикалы - промежуточные частицы во многих реакциях.

 

 


Поможем в написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой





Дата добавления: 2015-08-12; просмотров: 2812. Нарушение авторских прав; Мы поможем в написании вашей работы!

Studopedia.info - Студопедия - 2014-2022 год . (0.027 сек.) русская версия | украинская версия
Поможем в написании
> Курсовые, контрольные, дипломные и другие работы со скидкой до 25%
3 569 лучших специалисов, готовы оказать помощь 24/7