Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Ентропія і термодинамічна ймовірність





З молекулярно-кінетичної теорії випливає, що кожному стану тіла (наприклад, газу) відповідає певний розподіл його молекул за об’ємом і певний розподіл молекул за швидкостями.

Припустимо, що в посудині перебувають лише три „мічені” молекули газу a, b, і c, які рухаються з однаковою швидкістю, а весь об’єм посудини поділено на три рівні частини І, ІІ, ІІІ (рис. 87).

Різні стани газу розрізняються лише за розподілом молекул a, b, і c, по трьох комірках об’єму. Всього можливі 27 різних розподілів. Молекули газу рухаються хаотично. Якби ми спостерігали довгий час за можливими розподілами молекул a, b, і c, то виявили би, що в середньому всі 27 розподілів зустрічаються однаково часто. Вони рівноймовірні. Під ймовірністю даного розподілу розуміють границю

,

де – частина всього часу спостереження за розподілом частинок у системі, протягом якого відбувається даний розподіл.

Ймовірність кожного з 27 розподілів однакова і тому дорівнює .

Ймовірність розподілу , що об­числюється за вище написаним рівнянням, відмінна від ймовірності термодинамічного стану системи, який відповідає цьому розподілу. Річ у тому, що в однорідному газі всі молекули однакові. Тому всі стани, що відповідають однаковим числам молекул у кожній комірці, будуть тотожними незалежно від того, які саме молекули газу знаходяться в кожній комірці. Ймовірність стану 4, 6 або 8 дорівнює , а 22-27 – .

Отже, ймовірність будь-якого стану тіла W більша від ймовірності окремого розподілу в P разів , де P – термодинамічна ймовірність стану.

Термодинамічна ймовірність будь-якого стану тіла або системи дорівнює числу найрізноманітніших мікророзподілів частинок за координатами і швидкостями, які відповідають даному термодинамічному стану .

Найбільшу термодинамічну ймовірність має рівномірний розподіл, вона може здійснюватися найбільшою кількістю способів.

Больцман встановив зв’язок між ентропією S системи і термодинамічною ймовірністю P її стану

,

де – стала Больцмана. Це співвідношення називається формулою Больцмана.

Отже, ентропія визначається логарифмом числа мікророзподілів частинок, за допомогою якого може бути реалізований даний макростан.

Ентропія може розглядатися як міра ймовірності стану термодинамічної системи. Формула Больцмана дає змогу дати ентропії таке статистичне тлумачення: ентропія є мірою невпорядкованості системи.

Ентропія досягає найбільшого значення при найбільш ймовірному стані системи. Найбільш ймовірним є стан термодинамічної рівноваги, в такому стані механічна система має мінімальну потенціальну енергію. Отже, максимум ентропії відповідає стану рівноваги ізольованої системи.

Згідно із уявленнями термодинаміки процеси в замкненій системі йдуть в бік зростання ентропії до максимуму. Якщо ентропію трактувати статистично, то це означає, що процеси в замкненій системі йдуть в напрямку збільшення кількості
мікростанів, доки ймовірність станів не стане максимальною.







Дата добавления: 2015-08-12; просмотров: 4420. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕХНИКА ПОСЕВА, МЕТОДЫ ВЫДЕЛЕНИЯ ЧИСТЫХ КУЛЬТУР И КУЛЬТУРАЛЬНЫЕ СВОЙСТВА МИКРООРГАНИЗМОВ. ОПРЕДЕЛЕНИЕ КОЛИЧЕСТВА БАКТЕРИЙ Цель занятия. Освоить технику посева микроорганизмов на плотные и жидкие питательные среды и методы выделения чис­тых бактериальных культур. Ознакомить студентов с основными культуральными характеристиками микроорганизмов и методами определения...

САНИТАРНО-МИКРОБИОЛОГИЧЕСКОЕ ИССЛЕДОВАНИЕ ВОДЫ, ВОЗДУХА И ПОЧВЫ Цель занятия.Ознакомить студентов с основными методами и показателями...

Меры безопасности при обращении с оружием и боеприпасами 64. Получение (сдача) оружия и боеприпасов для проведения стрельб осуществляется в установленном порядке[1]. 65. Безопасность при проведении стрельб обеспечивается...

Условия приобретения статуса индивидуального предпринимателя. В соответствии с п. 1 ст. 23 ГК РФ гражданин вправе заниматься предпринимательской деятельностью без образования юридического лица с момента государственной регистрации в качестве индивидуального предпринимателя. Каковы же условия такой регистрации и...

Седалищно-прямокишечная ямка Седалищно-прямокишечная (анальная) ямка, fossa ischiorectalis (ischioanalis) – это парное углубление в области промежности, находящееся по бокам от конечного отдела прямой кишки и седалищных бугров, заполненное жировой клетчаткой, сосудами, нервами и...

Основные структурные физиотерапевтические подразделения Физиотерапевтическое подразделение является одним из структурных подразделений лечебно-профилактического учреждения, которое предназначено для оказания физиотерапевтической помощи...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия