Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Построение и интерпретация модели парной линейной регрессии и корреляции





Порядок выполнения работы

1 узнать у преподавателя номер своего варианта (вид продукта) и выписать данные из таблицы А1 Приложения А

2 используя разобранный пример в качестве образца, построить модель парной линейной регрессии и корреляции, рассчитать все показатели направления и тесноты связи, оценить значимость модели в целом и ее параметров, выполнить прогноз потребления продукта при предположении, что прогнозное значение располагаемых ресурсов на 10% больше его среднего значения

Содержание работы

 

Модели линейной регрессии, в которых переменные имеют первую степень (модели, линейные по переменным), а параметры выступают в виде коэффициентов при этих переменных (модели, линейные по параметрам), находят широкое применение в эконометрике ввиду четкой экономической интерпретации их параметров, а также потому, что многие зависимости, нелинейные на большом интервале значений факторов, близки к линейным на малом наблюдаемом интервале.

В парной линейной регрессии связь между переменными определяется следующим образом: (2.1), или, иначе, линейная регрессия сводится к нахождению уравнения вида

. (2.2)

Пусть у нас есть набор значений двух переменных и , где число наблюдений. Например, имеется информация по результатам обследования домохозяйств 10 децильных групп населения Республики Башкортостан за 2008 г. (таблица 2.1).

Таблица 2.1 Исходные данные

Децильные группы Располагаемые ресурсы, тыс. руб. на человека в месяц Потребление хлеба и хлебопродуктов (в среднем за месяц на человека), кг
  2,56 8,3
  3,70 8,9
  4,60 9,3
  5,74 9,9
  6,84 10,0
  8,30 11,1
  10,39 10,0
  14,31 10,0
  19,00 10,1
  40,82 13,0

Каждое из наблюдений характеризуется двумя переменными которые изобразим точками на плоскости (рисунок 2.1). Такое графическое построение называется полем корреляции.

Рисунок 2.1 Поле корреляции. Зависимость потребления хлеба и

хлебопродуктов от располагаемых душевых ресурсов

В этом случае наилучшей считается такая функция, график которой проходит через наибольшее количество точек или как можно ближе к ним.

При оценке параметров и уравнения парной линейной регрессии чаще всего применяется традиционный метод наименьших квадратов (МНК). Этот метод позволяет получить оценки параметров регрессии, соответствующие определенным критериям: несмещенности (несмещенность оценки означает, что математическое ожидание остатков равно нулю), эффективности (дисперсия должна быть наименьшей), состоятельности (повышение точности оценок с увеличением объема выборки). Условия, необходимые для получения несмещенных, состоятельных и эффективных оценок, служат предпосылками МНК.

Суть МНК заключается в том, что отыскиваются такие значения параметров уравнения: свободного члена уравнения регрессии и коэффициента регрессии , что сумма квадратов отклонений фактических значений результативного признака от вычисленных по уравнению регрессии, будет наименьшей из всех возможных:

Для того, чтобы найти минимум этой функции, надо вычислить частные производные по каждому из параметров и и приравнять их к нулю. Получается система нормальных уравнений для оценки параметров и :

. (2.3)

Решая данную систему нормальных уравнений либо методом последовательного исключения переменных, либо методом определителей, найдем искомые оценки параметров и (расчетные данные приведены в таблице 2.2).

Таблица 2.2 Расчетные данные для построения модели парной







Дата добавления: 2015-08-12; просмотров: 1109. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Уравнение волны. Уравнение плоской гармонической волны. Волновое уравнение. Уравнение сферической волны Уравнением упругой волны называют функцию , которая определяет смещение любой частицы среды с координатами относительно своего положения равновесия в произвольный момент времени t...

Медицинская документация родильного дома Учетные формы родильного дома № 111/у Индивидуальная карта беременной и родильницы № 113/у Обменная карта родильного дома...

Основные разделы работы участкового врача-педиатра Ведущей фигурой в организации внебольничной помощи детям является участковый врач-педиатр детской городской поликлиники...

Сравнительно-исторический метод в языкознании сравнительно-исторический метод в языкознании является одним из основных и представляет собой совокупность приёмов...

Концептуальные модели труда учителя В отечественной литературе существует несколько подходов к пониманию профессиональной деятельности учителя, которые, дополняя друг друга, расширяют психологическое представление об эффективности профессионального труда учителя...

Конституционно-правовые нормы, их особенности и виды Характеристика отрасли права немыслима без уяснения особенностей составляющих ее норм...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия