Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

ОБРАТНЫЕ МАТРИЦЫ





3.1. Определения и примеры.Для квадратной матрицы A(nxn) обратной к ней является матрица того же размера, удовлетворяющая равенствам: , где E – единичная матрица соответствующего размера.

Пример 3.1. Является ли матрица обратной к .

Решение. Найдем произведения этих матриц:

.

Итак, и .

Теорема о существовании. Матрица имеет обратную тогда и только тогда, когда ее определитель отличен от нуля (т.е. когда матрица является невырожденной).

3.2. Поиск обратной матрицы с помощью метода Гаусса. После вычисления определителя (чтобы убедиться, что обратная матрица существует) необходимо выписать матрицу, приписать к ней справа единичную соответствующего размера и «сдвоенную» матрицу путем элементарных преобразований привести к выражению (слева должна стоять единичная матрица, а справа появится искомая обратная).

Пример 3.2. Найти для .

Решение. . Значит,

матрица невырожденная и имеет обратную. Составим «сдвоенную» матрицу и проведем необходимые преобразования.

Таким образом, .

3.3. Поиск обратной матрицы с помощью алгебраических дополнений к элементам исходной матрицы. Это способ основан на применении формулы

, (9)

где - матрица из алгебраических дополнений к элементам матрицы A.

Пример 3.3. Найти для методом алгебраических дополнений.

Решение. Матрица та же самая, что в примере 3.2, поэтому ее определитель нам уже известен (). Найдем алгебраические дополнения к элементам исходной матрицы:

; ; ;
; ; ;
; ; .

Итак, ; . По формуле (9) получаем: . Эта матрица совпала с найденной при решении примера 3.2, что может служить проверкой правильности решения.

Замечание. Результат поиска обратной матрицы можно проверить и другим способом – убедиться в справедливости равенства .

Пример 3.4. Решить уравнения а) ; б) .

Решение. Матричное уравнение можно умножить слева на и получить (в силу определения обратной матрицы). С другой стороны, уравнение умножаем на матрицу слева и получаем . Найдем матрицу, обратную к . Используя метод Гаусса, получаем:

Значит, . Но тогда

;

.

Замечание. Результат можно проверить, подставив полученные матрицы в исходные уравнения.







Дата добавления: 2015-08-12; просмотров: 503. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Билиодигестивные анастомозы Показания для наложения билиодигестивных анастомозов: 1. нарушения проходимости терминального отдела холедоха при доброкачественной патологии (стенозы и стриктуры холедоха) 2. опухоли большого дуоденального сосочка...

Сосудистый шов (ручной Карреля, механический шов). Операции при ранениях крупных сосудов 1912 г., Каррель – впервые предложил методику сосудистого шва. Сосудистый шов применяется для восстановления магистрального кровотока при лечении...

Трамадол (Маброн, Плазадол, Трамал, Трамалин) Групповая принадлежность · Наркотический анальгетик со смешанным механизмом действия, агонист опиоидных рецепторов...

Подкожное введение сывороток по методу Безредки. С целью предупреждения развития анафилактического шока и других аллергических реак­ций при введении иммунных сывороток используют метод Безредки для определения реакции больного на введение сыворотки...

Принципы и методы управления в таможенных органах Под принципами управления понимаются идеи, правила, основные положения и нормы поведения, которыми руководствуются общие, частные и организационно-технологические принципы...

ПРОФЕССИОНАЛЬНОЕ САМОВОСПИТАНИЕ И САМООБРАЗОВАНИЕ ПЕДАГОГА Воспитывать сегодня подрастающее поколение на со­временном уровне требований общества нельзя без по­стоянного обновления и обогащения своего профессио­нального педагогического потенциала...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия