Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Функция Лапласа. Интегральная функц. Лапласа. Их применение для решения задач в условиях повторения испытаний.





Использовать формулу Бернулли при достаточно большом кол-ве испытаний затруднительно. Поэтому, когда используют теорему Лапласа. Локальная теорема Лапласа: Если вер. появления соб. А в кажд. испытании постоянна и отлична от 0 и 1, то вер. того, что соб. А появится в n испытаниях ровно m раз, приближен. равна(тем точнее, чем больше n) значению функции: , где , где . Имеются таблицы, в кот. помещены значения функц. , соответствующ. положит. значениям аргумента . Для отрицат. значений аргумента пользуются теми же таблицами, т.к. функц. четная, т.е. . Вер. того, что соб. А появится в n испытаниях ровно m раз , где . Предположим, что производится n испытаний, в кажд. из кот. вер. появл. соб. А постоянна и равна p, . Нужно найти вер того, что соб. А появится в n испытаниях не менее и не более раз, т.е. нужно найти . Теор.: Если вер. P наступления события в кажд. испытании постоянна и отлична от 0 и 1, то вер. того, что в n испытаниях соб. А появится от до раз , где . При решении задач, требующ. применения интегральн. теоремы Лапласа, пользуются специальн. таблицами. В них даны значения функции для положит. значений аргумента . Для <0 функц. нечетн., т.е. . В табл. приведены значения для . При >5 значение функц. считается постоян. и равно 0,5. Для того, чтобы можно было использовать табл. функций Лапл. преобразуем последнюю формулу: ; , где . Вер. того, что соб. А появится в n независим. испытаниях от до раз равна .

 







Дата добавления: 2015-08-12; просмотров: 477. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Демографияда "Демографиялық жарылыс" дегеніміз не? Демография (грекше демос — халық) — халықтың құрылымын...

Субъективные признаки контрабанды огнестрельного оружия или его основных частей   Переходя к рассмотрению субъективной стороны контрабанды, остановимся на теоретическом понятии субъективной стороны состава преступления...

ЛЕЧЕБНО-ПРОФИЛАКТИЧЕСКОЙ ПОМОЩИ НАСЕЛЕНИЮ В УСЛОВИЯХ ОМС 001. Основными путями развития поликлинической помощи взрослому населению в новых экономических условиях являются все...

ФАКТОРЫ, ВЛИЯЮЩИЕ НА ИЗНОС ДЕТАЛЕЙ, И МЕТОДЫ СНИЖЕНИИ СКОРОСТИ ИЗНАШИВАНИЯ Кроме названных причин разрушений и износов, знание которых можно использовать в системе технического обслуживания и ремонта машин для повышения их долговечности, немаловажное значение имеют знания о причинах разрушения деталей в результате старения...

Различие эмпиризма и рационализма Родоначальником эмпиризма стал английский философ Ф. Бэкон. Основной тезис эмпиризма гласит: в разуме нет ничего такого...

Индекс гингивита (PMA) (Schour, Massler, 1948) Для оценки тяжести гингивита (а в последующем и ре­гистрации динамики процесса) используют папиллярно-маргинально-альвеолярный индекс (РМА)...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия