Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

ВВЕДЕНИЕ. В природе, технике и экономике нет явлений, в которых не присутствовали бы элементы случайности





 

В природе, технике и экономике нет явлений, в которых не присутствовали бы элементы случайности. Существуют два подхода к изучению этих явлений. Один из них, классический или «детерминистский», состоит в том, что выделяются основные факторы, определяющие данное явление, а влиянием множества остальных, второстепенных факторов, приводящим к случайным отклонениям от результата, пренебрегают.

Другой подход к изучению явлений состоит в том, что элемент неопределенности, свойственный случайным явлениям и обусловленный второстепенными факторами, требует специальных методов их изучения. Разработкой таких методов, изучением специфических закономерностей, наблюдаемых в случайных явлениях, и занимается теория вероятностей.

Теория вероятностей – математическая наука, изучающая закономерности случайных явлений. Математическая статистика – раздел математики, изучающий математические методы сбора, систематизации, обработки и интерпретации результатов наблюдений с целью выявления статистических закономерностей. Математическая статистика опирается на теорию вероятностей.

Первые работы, в которых зарождались основные понятия теории вероятностей, появились в XVI – XVII вв. Они принадлежали Д. Кардано, Б. Паскалю, П. Ферма, Х. Гюйгенсу и др. и представляли попытки создания теории азартных игр с целью дать рекомендации игрокам. Следующий этап развития теории вероятностей связан с именем Якоба Бернулли (1654 – 1705). Доказанная им теорема, названная впоследствии «законом больших чисел», была первым теоретическим обоснованием накопленных ранее фактов.

Дальнейшее развитие теории вероятностей приходится на
XVII – XIX вв. благодаря работам А. Муавра, П. Лапласа, К. Гаусса, С. Пуассона и др. Новый, наиболее плодотворный период развития «математики случайностей» связан с именами русских математиков П.Л. Чебышева, А.А. Маркова и А.М. Ляпунова (XIX – начало XX в.). В этот период теория вероятностей становится стройной математической наукой.

Большой вклад в последующее развитие теории вероятностей и математической статистики внесли российские математики С.Н. Бернштейн, В.И. Романовский, А.Н. Колмогоров, А.Я. Хинчин, Ю.В. Линник, Б.В. Гнеденко, Н.В. Смирнов. Ю.В. Прохоров и др., а также ученые англо-американской школы Стьюдент (псевдоним В. Россета), Р. Фишер, Э. Пирсон, Е. Нейман, А. Вальд и др.

Широкому внедрению математико-статистических методов исследования способствовало появление во второй половине XX в. электронных вычислительных машин. Статистические программные пакеты сделали эти методы более доступными и наглядными, так как трудоемкую работу по расчету различных статистик, параметров, характеристик, построению таблиц и графиков в основном стал выполнять компьютер, а исследователю осталось главным образом творческая работа: постановка задачи, выбор методов ее решения и интерпретация результатов.

Изучение студентами основ теоретико-вероятностных методов является целью данного пособия.








Дата добавления: 2015-08-12; просмотров: 663. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Принципы резекции желудка по типу Бильрот 1, Бильрот 2; операция Гофмейстера-Финстерера. Гастрэктомия Резекция желудка – удаление части желудка: а) дистальная – удаляют 2/3 желудка б) проксимальная – удаляют 95% желудка. Показания...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Билиодигестивные анастомозы Показания для наложения билиодигестивных анастомозов: 1. нарушения проходимости терминального отдела холедоха при доброкачественной патологии (стенозы и стриктуры холедоха) 2. опухоли большого дуоденального сосочка...

Что такое пропорции? Это соотношение частей целого между собой. Что может являться частями в образе или в луке...

Растягивание костей и хрящей. Данные способы применимы в случае закрытых зон роста. Врачи-хирурги выяснили...

ФАКТОРЫ, ВЛИЯЮЩИЕ НА ИЗНОС ДЕТАЛЕЙ, И МЕТОДЫ СНИЖЕНИИ СКОРОСТИ ИЗНАШИВАНИЯ Кроме названных причин разрушений и износов, знание которых можно использовать в системе технического обслуживания и ремонта машин для повышения их долговечности, немаловажное значение имеют знания о причинах разрушения деталей в результате старения...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия