Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

ВВЕДЕНИЕ. В природе, технике и экономике нет явлений, в которых не присутствовали бы элементы случайности





 

В природе, технике и экономике нет явлений, в которых не присутствовали бы элементы случайности. Существуют два подхода к изучению этих явлений. Один из них, классический или «детерминистский», состоит в том, что выделяются основные факторы, определяющие данное явление, а влиянием множества остальных, второстепенных факторов, приводящим к случайным отклонениям от результата, пренебрегают.

Другой подход к изучению явлений состоит в том, что элемент неопределенности, свойственный случайным явлениям и обусловленный второстепенными факторами, требует специальных методов их изучения. Разработкой таких методов, изучением специфических закономерностей, наблюдаемых в случайных явлениях, и занимается теория вероятностей.

Теория вероятностей – математическая наука, изучающая закономерности случайных явлений. Математическая статистика – раздел математики, изучающий математические методы сбора, систематизации, обработки и интерпретации результатов наблюдений с целью выявления статистических закономерностей. Математическая статистика опирается на теорию вероятностей.

Первые работы, в которых зарождались основные понятия теории вероятностей, появились в XVI – XVII вв. Они принадлежали Д. Кардано, Б. Паскалю, П. Ферма, Х. Гюйгенсу и др. и представляли попытки создания теории азартных игр с целью дать рекомендации игрокам. Следующий этап развития теории вероятностей связан с именем Якоба Бернулли (1654 – 1705). Доказанная им теорема, названная впоследствии «законом больших чисел», была первым теоретическим обоснованием накопленных ранее фактов.

Дальнейшее развитие теории вероятностей приходится на
XVII – XIX вв. благодаря работам А. Муавра, П. Лапласа, К. Гаусса, С. Пуассона и др. Новый, наиболее плодотворный период развития «математики случайностей» связан с именами русских математиков П.Л. Чебышева, А.А. Маркова и А.М. Ляпунова (XIX – начало XX в.). В этот период теория вероятностей становится стройной математической наукой.

Большой вклад в последующее развитие теории вероятностей и математической статистики внесли российские математики С.Н. Бернштейн, В.И. Романовский, А.Н. Колмогоров, А.Я. Хинчин, Ю.В. Линник, Б.В. Гнеденко, Н.В. Смирнов. Ю.В. Прохоров и др., а также ученые англо-американской школы Стьюдент (псевдоним В. Россета), Р. Фишер, Э. Пирсон, Е. Нейман, А. Вальд и др.

Широкому внедрению математико-статистических методов исследования способствовало появление во второй половине XX в. электронных вычислительных машин. Статистические программные пакеты сделали эти методы более доступными и наглядными, так как трудоемкую работу по расчету различных статистик, параметров, характеристик, построению таблиц и графиков в основном стал выполнять компьютер, а исследователю осталось главным образом творческая работа: постановка задачи, выбор методов ее решения и интерпретация результатов.

Изучение студентами основ теоретико-вероятностных методов является целью данного пособия.








Дата добавления: 2015-08-12; просмотров: 663. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Понятие и структура педагогической техники Педагогическая техника представляет собой важнейший инструмент педагогической технологии, поскольку обеспечивает учителю и воспитателю возможность добиться гармонии между содержанием профессиональной деятельности и ее внешним проявлением...

Репродуктивное здоровье, как составляющая часть здоровья человека и общества   Репродуктивное здоровье – это состояние полного физического, умственного и социального благополучия при отсутствии заболеваний репродуктивной системы на всех этапах жизни человека...

Случайной величины Плотностью распределения вероятностей непрерывной случайной величины Х называют функцию f(x) – первую производную от функции распределения F(x): Понятие плотность распределения вероятностей случайной величины Х для дискретной величины неприменима...

Общая и профессиональная культура педагога: сущность, специфика, взаимосвязь Педагогическая культура- часть общечеловеческих культуры, в которой запечатлил духовные и материальные ценности образования и воспитания, осуществляя образовательно-воспитательный процесс...

Устройство рабочих органов мясорубки Независимо от марки мясорубки и её технических характеристик, все они имеют принципиально одинаковые устройства...

Ведение учета результатов боевой подготовки в роте и во взводе Содержание журнала учета боевой подготовки во взводе. Учет результатов боевой подготовки - есть отражение количественных и качественных показателей выполнения планов подготовки соединений...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия