Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Условие существования нетривиальных решений однородной системы и их нахождение





Однородная система m линейных уравнений относительно n неизвестных нетривиально совместна (имеет ненулевое решение) тогда и только тогда, когда ранг r матрицы системы меньше числа неизвестных: r < n.

Однородная система n линейных уравнений относительно n неизвестных нетривиально совместна тогда и только тогда, когда матрица системы

Система называется однородной, если все ее свободные члены b1, b2,...,bm равны нулю.

Если определитель матрицы А равен 0, то существует ненулевое решение СЛАУ (достаточное условие)
Докажем это на СЛАУ второго порядка. Возьмем определитель матрицы СЛАУ второго порядка, раскроем его и приравняем к 0. После этого, перенося слагаемое с отрицательным знаком в правую часть и записав результат в виде пропорции, увидим, что коэффициенты в СЛАУ пропорциональны, следовательны, векторы, имеющие координатами эти коэффициенты (то есть а=(а11, а12) и а=(а21, а22)), линейно зависимы. Следовательно, существует пара x1 и x2, неравные 0 одновременно, то есть ненулевое решение х1а1+х2а2=0. Ясно, что а - векторы, координаты которых смотри выше. Теорема доказана.
Есть еще обратная теорема к этой (то есть необходимое условие). Почему обратная - не понимаю. Вот формулировка: если однородная СЛАУ имеет ненулевое решение, то ее определитель равен нулю.
Доказательство: Если бы СЛАУ имела единственное решение, то это решение было бы нулевым (по правилу Крамера). Определитель тогда не равен 0. Но он нулю должен быть равен, значит, решение ненулевое.







Дата добавления: 2015-08-12; просмотров: 5682. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Этапы творческого процесса в изобразительной деятельности По мнению многих авторов, возникновение творческого начала в детской художественной практике носит такой же поэтапный характер, как и процесс творчества у мастеров искусства...

Тема 5. Анализ количественного и качественного состава персонала Персонал является одним из важнейших факторов в организации. Его состояние и эффективное использование прямо влияет на конечные результаты хозяйственной деятельности организации.

Билет №7 (1 вопрос) Язык как средство общения и форма существования национальной культуры. Русский литературный язык как нормированная и обработанная форма общенародного языка Важнейшая функция языка - коммуникативная функция, т.е. функция общения Язык представлен в двух своих разновидностях...

Внешняя политика России 1894- 1917 гг. Внешнюю политику Николая II и первый период его царствования определяли, по меньшей мере три важных фактора...

Оценка качества Анализ документации. Имеющийся рецепт, паспорт письменного контроля и номер лекарственной формы соответствуют друг другу. Ингредиенты совместимы, расчеты сделаны верно, паспорт письменного контроля выписан верно. Правильность упаковки и оформления....

БИОХИМИЯ ТКАНЕЙ ЗУБА В составе зуба выделяют минерализованные и неминерализованные ткани...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия