Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Поверхность в пространстве. Поверхности вращения, цилиндрические, конические и их примеры.





1. Поверхность в пространстве можно рассматривать как геометрическое место точек, удовлетворяющих какому-либо условию. Например, сфера радиуса R с центром в точке О 1 есть геометрическое место всех точек пространства, находящихся от точки О 1 на расстоянии R. 2. Поверхность, образованная вращением некоторой плоской кривой вокруг оси, лежащей в её плоскости, называется поверхностью вращения. Пусть некоторая прямая L лежит в плоскости Oyz. Уравнения этой кривой запишутся в виде Возьмём на поверхности произвольную точку М(x;y;z). Проведём через т. М плоскость, перпендикулярную оси Оz, и обозначим точки пересечения с осью Оz и кривой L соответственно через О 1 и N. Обозначим координаты точки N(0;y1;z1). Отрезки О1М и О1N являются радиусами одной и той же окружности. Поэтому О1М=О1N. Но О1М= , О1N= . Следовательно, = или у1 = ± . Кроме того . F(± ;z)=0 - yравнение поверхности вращения, ему удовлетворяют координаты любой точки М этой поверхности и не удовлетворяют координаты точек, не лежащих на поверхности вращения. 3. Поверхность образованная прямыми линиями, проходящими через данную точку Р и пересекающими данную плоскую линию L (не проходящую через Р), называется конической поверхностью или конусом. При этом линия L называется направляющей конуса, точка Р- её вершиной, а прямая, описывающая поверхность, называется образующей.Пусть направляющая L задана уравнениями , а точка Р ()- вершина конусаВозьмём на поверхности конуса произвольную точку М . Образующая, проходящая через т. М и Р, пересечёт направляющую L в некоторой точке N(х1;y1;z1). Координаты т. N удовлетворяют уравнениям направляющей: . Канонические уравнения образующих, проходящих через точки Р и N имеют вид . 4. Поверхность, образованная движением прямой L, которая перемещается в пространстве, сохраняя постоянное направление и пересекая каждый раз некоторую кривую К, называется цилиндрической поверхностью или цилиндром. При этом кривая К называется направляющей цилиндра, а прямая L его образующей. Пусть в плоскости Оху лежит некоторая линия К, уравнение которой F(x;y)=0. Построим цилиндр с образующими параллельными оси Оz и направляющей К. Возьмём на цилиндре любую т. М . Она лежит на какой-то образующей. Пусть N- точка пересечения этой образующей с плоскостью Оху. Следовательно,т.N лежит на кривой К и её координаты удовлетворяют уравнению F(x;y)=0. Этому уравнению удовлетворяют координаты т. М .И так как М- любая точка цилиндра, то F(x;y)=0 и будет уравнением цилиндра.








Дата добавления: 2015-08-12; просмотров: 526. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Травматическая окклюзия и ее клинические признаки При пародонтите и парадонтозе резистентность тканей пародонта падает...

Подкожное введение сывороток по методу Безредки. С целью предупреждения развития анафилактического шока и других аллергических реак­ций при введении иммунных сывороток используют метод Безредки для определения реакции больного на введение сыворотки...

Принципы и методы управления в таможенных органах Под принципами управления понимаются идеи, правила, основные положения и нормы поведения, которыми руководствуются общие, частные и организационно-технологические принципы...

Понятие массовых мероприятий, их виды Под массовыми мероприятиями следует понимать совокупность действий или явлений социальной жизни с участием большого количества граждан...

Тактика действий нарядов полиции по предупреждению и пресечению правонарушений при проведении массовых мероприятий К особенностям проведения массовых мероприятий и факторам, влияющим на охрану общественного порядка и обеспечение общественной безопасности, можно отнести значительное количество субъектов, принимающих участие в их подготовке и проведении...

Тактические действия нарядов полиции по предупреждению и пресечению групповых нарушений общественного порядка и массовых беспорядков В целях предупреждения разрастания групповых нарушений общественного порядка (далееГНОП) в массовые беспорядки подразделения (наряды) полиции осуществляют следующие мероприятия...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия