Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Поверхность в пространстве. Поверхности вращения, цилиндрические, конические и их примеры.





1. Поверхность в пространстве можно рассматривать как геометрическое место точек, удовлетворяющих какому-либо условию. Например, сфера радиуса R с центром в точке О 1 есть геометрическое место всех точек пространства, находящихся от точки О 1 на расстоянии R. 2. Поверхность, образованная вращением некоторой плоской кривой вокруг оси, лежащей в её плоскости, называется поверхностью вращения. Пусть некоторая прямая L лежит в плоскости Oyz. Уравнения этой кривой запишутся в виде Возьмём на поверхности произвольную точку М(x;y;z). Проведём через т. М плоскость, перпендикулярную оси Оz, и обозначим точки пересечения с осью Оz и кривой L соответственно через О 1 и N. Обозначим координаты точки N(0;y1;z1). Отрезки О1М и О1N являются радиусами одной и той же окружности. Поэтому О1М=О1N. Но О1М= , О1N= . Следовательно, = или у1 = ± . Кроме того . F(± ;z)=0 - yравнение поверхности вращения, ему удовлетворяют координаты любой точки М этой поверхности и не удовлетворяют координаты точек, не лежащих на поверхности вращения. 3. Поверхность образованная прямыми линиями, проходящими через данную точку Р и пересекающими данную плоскую линию L (не проходящую через Р), называется конической поверхностью или конусом. При этом линия L называется направляющей конуса, точка Р- её вершиной, а прямая, описывающая поверхность, называется образующей.Пусть направляющая L задана уравнениями , а точка Р ()- вершина конусаВозьмём на поверхности конуса произвольную точку М . Образующая, проходящая через т. М и Р, пересечёт направляющую L в некоторой точке N(х1;y1;z1). Координаты т. N удовлетворяют уравнениям направляющей: . Канонические уравнения образующих, проходящих через точки Р и N имеют вид . 4. Поверхность, образованная движением прямой L, которая перемещается в пространстве, сохраняя постоянное направление и пересекая каждый раз некоторую кривую К, называется цилиндрической поверхностью или цилиндром. При этом кривая К называется направляющей цилиндра, а прямая L его образующей. Пусть в плоскости Оху лежит некоторая линия К, уравнение которой F(x;y)=0. Построим цилиндр с образующими параллельными оси Оz и направляющей К. Возьмём на цилиндре любую т. М . Она лежит на какой-то образующей. Пусть N- точка пересечения этой образующей с плоскостью Оху. Следовательно,т.N лежит на кривой К и её координаты удовлетворяют уравнению F(x;y)=0. Этому уравнению удовлетворяют координаты т. М .И так как М- любая точка цилиндра, то F(x;y)=0 и будет уравнением цилиндра.








Дата добавления: 2015-08-12; просмотров: 526. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

ФАКТОРЫ, ВЛИЯЮЩИЕ НА ИЗНОС ДЕТАЛЕЙ, И МЕТОДЫ СНИЖЕНИИ СКОРОСТИ ИЗНАШИВАНИЯ Кроме названных причин разрушений и износов, знание которых можно использовать в системе технического обслуживания и ремонта машин для повышения их долговечности, немаловажное значение имеют знания о причинах разрушения деталей в результате старения...

Различие эмпиризма и рационализма Родоначальником эмпиризма стал английский философ Ф. Бэкон. Основной тезис эмпиризма гласит: в разуме нет ничего такого...

Индекс гингивита (PMA) (Schour, Massler, 1948) Для оценки тяжести гингивита (а в последующем и ре­гистрации динамики процесса) используют папиллярно-маргинально-альвеолярный индекс (РМА)...

Опухоли яичников в детском и подростковом возрасте Опухоли яичников занимают первое место в структуре опухолей половой системы у девочек и встречаются в возрасте 10 – 16 лет и в период полового созревания...

Способы тактических действий при проведении специальных операций Специальные операции проводятся с применением следующих основных тактических способов действий: охрана...

Искусство подбора персонала. Как оценить человека за час Искусство подбора персонала. Как оценить человека за час...

Studopedia.info - Студопедия - 2014-2024 год . (0.008 сек.) русская версия | украинская версия