Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Дифференциальное уравнение и его решение.





Чтобы в реальной колебательной системе получить незатухающие колебания, надо компенсировать потери энергии. Такая компенсация возможна с помощью какого-либо периодически действующего фактора X (t), изменяющего по гармоническому закону:

Если рассматривать механические колебания, то роль X (t) играет внешняя вынуждающая сила

(147.1)

С учетом (147.1) закон движения для пружинного маятника (146.9) запишется в виде

Используя (142.2) и (146.10), придем к уравнению

(147.2)

Если рассматривать электрический колебательный контур, то роль X (t) играет подводимая к контуру внешняя периодически изменяющаяся по гармоническому закону э.д.с. или переменное напряжение

(147.3)

Тогда уравнение (143.2) с учетом (147.3) можно записать в виде

Используя (143.4) и (146.11), придем к уравнению

(147.4)

Колебания, возникающие под действием внешней периодически изменяющейся силы или внешней периодически изменяющейся э.д.с., называются соответственно вынужденными механическими и вынужденными электромагнитными колебаниями.

Уравнения (147.2) и (147.4) можно свести к линейному неоднородному дифференциальному уравнению

(147.5)

применяя впоследствии его решение для вынужденных колебаний конкретной физической природы (x 0 в случае механических колебаний равно F 0 /m, в случае электромагнитных — U m/ L).

Решение уравнения (147.5) равно сумме общего решения (146.5) однородного урав­нения (146.1) и частного решения неоднородного уравнения. Частное решение найдем в комплексной форме. Заменим правую часть уравнения (147.5) на комплексную величину х 0 :

(147.6)

Частное решение этого уравнения будем искать в виде

Подставляя выражение для s и его производных в уравнение (147.6), получаем

(147.7)

Так как это равенство должно быть справедливым для всех моментов времени, то время t из него должно исключаться. Отсюда следует, что h=w. Учитывая это, из уравнения (147.7) найдем величину s 0 и умножим ее числитель и знаменатель на

Это комплексное число удобно представить в экспоненциальной форме:

где

(147.8)

(147.9)

Следовательно, решение уравнения (147.6) в комплексной форме примет вид

Его вещественная часть, являющаяся решением уравнения (147.5), равна

(147.10)

где А и j задаются соответственно формулами (147.8) и (147.9).

Таким образом, частное решение неоднородного уравнения (147.5) имеет вид

(147.11)

Решение уравнения (147.5) равно сумме общего решения однородного уравнения

(147.12)

(см. (146.5)) и частного решения (147.11). Слагаемое (147.12) играет существенную роль только в начальной стадии процесса (при установлении колебаний) до тех пор, пока амплитуда вынужденных колебаний не достигнет значения, определяемого равенством (147.8). Графически вынужденные колебания представлены на рис. 209. Следовательно, в установившемся режиме вынужденные колебания происходят с частотой w и являются гармоническими; амплитуда и фаза колебаний, определяемые выражениями (147.8) и (147.9), также зависят от w.

Запишем формулы (147.10), (147.8) и (147.9) для электромагнитных колебаний, учитывая, что (см. (143.4)) и (см. (146.11)):

(147.13)

Продифференцировав Q=Q mcos(wt–a) по t, найдем силу тока в контуре при установившихся колебаниях:

(147.14)

где

(147.15)

Выражение (147.14) может быть записано в виде

где j = ap /2 — сдвиг по фазе между током и приложенным напряжением (см. (147.3)). В соответствии с выражением (147.13)

(147.16)

Из формулы (147.16) вытекает, что ток отстает по фазе от напряжения (j>;0), если wL>;1/(w С), и опережает напряжение (j<;0), если wL<;1/(w С).

Формулы (147.15) и (147.16) можно также получить с помощью векторной диаграммы.

 







Дата добавления: 2015-08-10; просмотров: 485. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Постинъекционные осложнения, оказать необходимую помощь пациенту I.ОСЛОЖНЕНИЕ: Инфильтрат (уплотнение). II.ПРИЗНАКИ ОСЛОЖНЕНИЯ: Уплотнение...

Приготовление дезинфицирующего рабочего раствора хлорамина Задача: рассчитать необходимое количество порошка хлорамина для приготовления 5-ти литров 3% раствора...

Дезинфекция предметов ухода, инструментов однократного и многократного использования   Дезинфекция изделий медицинского назначения проводится с целью уничтожения патогенных и условно-патогенных микроорганизмов - вирусов (в т...

ТЕРМОДИНАМИКА БИОЛОГИЧЕСКИХ СИСТЕМ. 1. Особенности термодинамического метода изучения биологических систем. Основные понятия термодинамики. Термодинамикой называется раздел физики...

Травматическая окклюзия и ее клинические признаки При пародонтите и парадонтозе резистентность тканей пародонта падает...

Подкожное введение сывороток по методу Безредки. С целью предупреждения развития анафилактического шока и других аллергических реак­ций при введении иммунных сывороток используют метод Безредки для определения реакции больного на введение сыворотки...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия