Уравнение плоской волны
Найдем вид функции x в случае плоской волны, предполагая, что колебания носят гармонический характер. Направим оси координат так, чтобы ось x совпадала с направлением распространения волны. Тогда волновая поверхность будет перпендикулярна оси x. Так как все точки волновой поверхности колеблются одинаково, смещение x будет зависеть только от х и t:. Пусть колебание точек, лежащих в плоскости, имеет вид (при начальной фазе)
Найдем вид колебания частиц в плоскости, соответствующей произвольному значению x. Чтобы пройти путь x, необходимо время. Следовательно, колебания частиц в плоскости x будут отставать по времени на t от колебаний частиц в плоскости, т.е.
– это уравнение плоской волны. Таким образом, x есть смещение любой из точек с координатой x в момент времени t. При выводе мы предполагали, что амплитуда колебания. Это будет, если энергия волны не поглощается средой. Такой же вид уравнение (5.2.3) будет иметь, если колебания распространяются вдоль оси y или z. В общем виде уравнение плоской волны записывается так:
Выражения (5.2.3) и (5.2.4) есть уравнения бегущей волны. Уравнение (5.2.3) описывает волну, распространяющуюся в сторону увеличения x. Волна, распространяющаяся в противоположном направлении, имеет вид: . Уравнение волны можно записать и в другом виде. Введем волновое число, или в векторной форме:
где – волновой вектор, – нормаль к волновой поверхности. Так как, то. Отсюда. Тогда уравнение плоской волны запишется так:
|