С ПОМОЩЬЮ КОЛЕЦ НЬЮТОНА
Приборы и принадлежности: плоскопараллельная стеклянная пластинка и плосковыпуклая линза в оправе, микроскоп с осветителем отраженного света, окулярный микрометр, набор светофильтров. Уравнение волны Установим зависимость между смещением х частиц среды, участвующих в волновом процессе, и расстоянием у этих частиц от источника О колебаний для любого момента времени t. Для большей наглядности рассмотрим поперечную волну, хотя все последующие рассуждения верны и для продольной волны. Пусть колебания источника (точка О) являются гармоническими: , где А – амплитуда, ω – круговая частота колебаний. Тогда все частицы среды тоже придут в гармоническое колебание с той же частотой и амплитудой, но с различными фазами. В среде возникает синусоидальная волна (рис.1). График волны (рис.1) внешне похож на график гармонического колебания, но по существу они различны. График колебания представляет зависимость смещения частицы от времени, график волны – смещения всех частиц среды относительно положения равновесия в зависимости от ее расстояния до источника колебаний в данный момент времени. Он является как бы моментальной фотографией волны. Рассмотрим некоторую частицу С, находящуюся на расстоянии у от источника колебаний (частицы О). Очевидно, что если частица О колеблется уже t секунд, то частица С колеблется еще только (t -τ) секунд, где τ – время распространения колебаний от 0 до С, т.е. время, за которое волна переместилась на определенное расстояние у. Тогда уравнение колебания частицы С следует написать так: Но где v – скорость распространения волны. Тогда (1) Соотношение (1), позволяющее определить смещение (отклонение) любой точки среды от положения равновесия в любой момент времени, называется уравнением волны. Вводя в рассмотрение длину волны λ как расстояние между двумя ближайшими точками волны, находящимися в одинаковой фазе, например, между двумя соседними гребнями волны, можно придать уравнению волны другой вид. Очевидно, что длина волны равна расстоянию, на которое распространяется колебание за период Т со скоростью v: (2) где ν – частота волны. Тогда, подставляя в уравнение (1) и учитывая, что , получим другие формы уравнения волны: или . (3) Интерференция волн Если в среде несколько источников колебаний, то исходящие от них волны распространяются независимо друг от друга и после взаимного пересечения расходятся, не имея никаких следов происшедшей встречи. Это положение называется принципом суперпозиции. Его иллюстрацией может служить распространение водяных волн, вызванных двумя брошенными на поверхность воды камнями (рис.2).
В местах встречи волн колебания среды, вызванные каждой из волн, складываются друг с другом (можно сказать: волны складываются) Результат сложения (результирующая волна) зависит от соотношения фаз, периодов и амплитуд встречающихся волн. Большой практический интерес представляет случай сложения двух (или нескольких) волн, имеющих постоянную разность фаз и одинаковые частоты. Подразумевается, что направление колебаний у всех волн одинаково. Такие волны и создающие их источники колебаний называются когерентными. Сложение когерентных волн называется интерференцией. Рассмотрим интерференцию двух волн одинаковой амплитуды, исходящих из когерентных источников S΄ и S˝ и встречающихся в точке Р (рис.3). Согласно уравнению волны (3), смещения, вызванные в точке Р первой и второй волнами, равны соответственно: х1 = А sin(ωt –2πу1/λ) и х2 = А sin(ωt –2πу2/λ) В результате точка Р будет совершать колебания по синусоидальному закону: х = х1+х2 = 2А cos 2π(у1 –y2) /λ ·sin(ωt –2π(у1 +y2 ) /λ) с амплитудой 2А cos 2π(у1 –y2) /λ, зависящей отразности фаз . Если (4) то в точке Р наблюдается максимум: колебания максимально усилят друг друга и результирующая амплитуда будет равна 2 А. Если же (5) где n =0,1,2,3,…, то в точке Р будет минимум: колебания взаимно погасятся и результирующая амплитуда в этом случае равна нулю. Условия максимума (4) и минимума (5) можно еще записать соответственно так: (6) (7) где Δ у= (у1 –y2) – разность хода волн, или разность хода лучей. Следовательно, в точке Р будет максимум, если разность хода волн составляет четное число полуволн (целое число волн); если разность хода составляет нечетное число полуволн, то в точке Р будет минимум. Так как волны распространяются от источников S΄ и S˝ по всем направлениям, то в пространстве окажется множество точек, удовлетворяющих как условию (6), так и условию (7), т.е. найдется множество точке, соответствующих максимуму и минимуму колебаний. Поэтому интерференционная картина представит собой чередование областей усиления колебаний (максимумов) и областей, где колебания отсутствуют (минимумов). Более подробно эта интерференционная картина будет рассмотрена ниже для случая электромагнитных световых волн.
|