Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Стоки и источники в пространстве





Рассмотрим задачу о потенциале точечного стока в пространстве. В этом случае приток будет радиально-сферический (рис. 2.5). По закону Дарси имеем

С другой стороны, можно записать

где f =4 pr 2 – площадь фильтрации сферы.

Приравнивая указанные выражения и интегрируя, получаем

(2.20)

Рис. 2.5. Схема радиально-сферического притока

Получили формулу потенциала точечного стока в пространстве. При r= 0 имеем Ф =-¥, u =¥; при r= ¥ получаем Ф = const, u =0. Покажем использование формулы (2.20). Пусть Ф к и Ф с потенциалы на сферах, описанных радиусами R к и r с. Согласно (2.20) имеем:

(2.21)

По правилу производных пропорций из (2.21) имеем

. (2.22)

При r ®¥ const в (2.20) становится потенциалом на бесконечности. Обычно , следовательно, .

Тогда

. (2.23)

Таким образом, для точечного стока в пространстве радиус контура питания практически на дебит не влияет. В случае плоскорадиального притока (формула Дюпюи) ошибка в выборе в 2-3 раза к большим погрешностям в дебите не приведет. Для полупространства (рис. 2.6), например, пласт большой толщины, где вскрыта только кровля пласта, формула (2.22), очевидно, запишется в виде

. (2.24)

 

Рис. 2.6. Схема радиально-сферического притока в полупространстве

(скважина вскрыла лишь кровлю пласта)

 







Дата добавления: 2015-08-12; просмотров: 820. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Педагогическая структура процесса социализации Характеризуя социализацию как педагогический процессе, следует рассмотреть ее основные компоненты: цель, содержание, средства, функции субъекта и объекта...

Типовые ситуационные задачи. Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической   Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической нагрузке. Из медицинской книжки установлено, что он страдает врожденным пороком сердца....

Типовые ситуационные задачи. Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт. ст. Влияние психоэмоциональных факторов отсутствует. Колебаний АД практически нет. Головной боли нет. Нормализовать...

Образование соседних чисел Фрагмент: Программная задача: показать образование числа 4 и числа 3 друг из друга...

Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...

Краткая психологическая характеристика возрастных периодов.Первый критический период развития ребенка — период новорожденности Психоаналитики говорят, что это первая травма, которую переживает ребенок, и она настолько сильна, что вся последую­щая жизнь проходит под знаком этой травмы...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия