Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Дифференциальные уравнения теории установившейся фильтрации однородно жидкости





Для характеристки неустановившегося движения (т. е. когда скорости фильтрации, дебиты меняются со временем) оказывается необходимым использовать методы математической физики, основанные на составлении и интегрировании дифференциальных уравнений. При фильтрации однородной жидкости неизвестными функциями являются:

1) давление Р в любой точке пористой среды;

2) плотность r жидкости;

3) вектор скорости фильтрации , представленный 3-мя компонентами по координатным осям;

4) т – пористость;

5) температура среды Т ср;

6) температура жидкости Т ж.

Таким образом, имеем 8 неизвестных функций. Но ввиду малых скоростей фильтрации в пласте движение остается практически изотермическим, поэтому число неизвестных сокращается до шести.

Итак, мы установили шесть неизвестных функций. Перейдем к их выводу. Введем уравнение фильтрации как обобщение закона Дарси, который в векторной форме, как это было показано раньше, имеет вид [5-8]:

(1.39)

При такой записи массовыми силами для сжимаемой жидкости пренебрегаем. Уравнение неразрывности (сплошности) фильтрации жидкости в пористой среде записывается в виде:

(1.40)

Для сплошного потока жидкости, например в трубе, т = 0, имеем:

(1.41)

Здесь – вектор массовой скорости фильтрации. Если спроектировать вектор скорости фильтрации на координатные оси, то модули составляющих векторов запишутся в виде:

(1.42)

Выражение (1.42) представляет собой уравнения движения жидкости в пористой среде. Чтобы система уравнений была замкнутой, необходимо добавить уравнение состояния.

. (1.43)

При изотермическом процессе (Т=const) имеем:

для несжимаемой жидкости

(1.44)

для упругой жидкости

; (1.45)

для реальных газов

(1.46)

где

Z – коэффициент сжимаемости (для идеальных газов Z =1);

R – газовая постоянная;

T – температура пласта;

ρ,ρ;0 – плотности, соответствующие значениям давлений Р и Р 0;

К 0 – модуль упругости жидкости.

Проницаемость является функцией давления.

т = т (P). (1.47)

Считают, что для реальных пластов изменение пористости подчиня-

ется закону Гука

, (1.48)

 

где К с – модуль упругости пористой среды.

Заметим, что запись потенциала Ф в уравнениях (1.39) и (1.42) справедлива, если Кconst и m=const. В этом случае для несжимаемой жидкости (r=const) в неизменяемой пористой среде (т=const) уравнение неразрывности будет иметь вид

(1.49)

Тогда, подставляя (1.42) в (1.49), получаем:

(1.50)

Получили одно из важнейших уравнений математической физики – уравнение Лапласа. Стационарное распределение температуры, стационарное движение электричества удовлетворяют уравнению Лапласа. Электромоделирование основано на использовании этого уравнения. При этом аналогом давления является электрический потенциал.

Оказывается, если заданы одинаковые граничные условия и дифференциальные уравнения имеют одинаковый вид, то, изучая процесс на какой-либо другой модели, можно получить решение, справедливое для процессов из другой области. Потенциал скорости фильтрации, очевидно, удовлетворяет уравнению Лапласа

. (1.51)

Уравнение Лапласа является линейным, а для последних справедлив принцип суперпозиции, т. е. сумма частных решений линейных уравнений, умноженных на произвольные постоянные, также является решением этого линейного дифференциального уравнения. Математически это выглядит так. Если имеется несколько фильтрационных потоков Ф 1, Ф 2, Ф 3,..., Фп,которые удовлетворяют уравнению Лапласа, т. е,

(1.52)

то суммарный потенциал Ф = также удовлетворяет уравнению Лапласа, т. е

(1.53)

Итак, потенциалы отдельных фильтрационных потоков несжимаемой жидкости складываются алгебраически, а векторы скорости фильтрации – геометрически.








Дата добавления: 2015-08-12; просмотров: 861. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Понятие и структура педагогической техники Педагогическая техника представляет собой важнейший инструмент педагогической технологии, поскольку обеспечивает учителю и воспитателю возможность добиться гармонии между содержанием профессиональной деятельности и ее внешним проявлением...

Репродуктивное здоровье, как составляющая часть здоровья человека и общества   Репродуктивное здоровье – это состояние полного физического, умственного и социального благополучия при отсутствии заболеваний репродуктивной системы на всех этапах жизни человека...

Случайной величины Плотностью распределения вероятностей непрерывной случайной величины Х называют функцию f(x) – первую производную от функции распределения F(x): Понятие плотность распределения вероятностей случайной величины Х для дискретной величины неприменима...

Механизм действия гормонов а) Цитозольный механизм действия гормонов. По цитозольному механизму действуют гормоны 1 группы...

Алгоритм выполнения манипуляции Приемы наружного акушерского исследования. Приемы Леопольда – Левицкого. Цель...

ИГРЫ НА ТАКТИЛЬНОЕ ВЗАИМОДЕЙСТВИЕ Методические рекомендации по проведению игр на тактильное взаимодействие...

Studopedia.info - Студопедия - 2014-2025 год . (0.015 сек.) русская версия | украинская версия