Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Закон распределения случайных величин. Нормальное распределение. Показательное распределение. Равномерное распределение. Некоторые другие виды распределения.





Непрерывная случайная величина называется распределенной по нормальному закону, если ее плотность распределения имеет вид:

(6.1)

Замечание. Таким образом, нормальное распределение определяется двумя параметрами: а и σ;.

График плотности нормального распределения называют нормальной кривой (кривой Гаусса). Выясним, какой вид имеет эта кривая, для чего исследуем функцию (6.1).

1)Область определения этой функции: (-∞, +∞).

2)f (x) > 0 при любом х (следовательно, весь график расположен выше оси О х).

3) то есть ось О х служит горизонтальной асимптотой графика при

4) при х = а; при x > a, при x < a. Следовательно, - точка максимума.

5)F (x – a) = f (a – x), то есть график симметричен относительно прямой х = а.

6) при , то есть точки являются точками перегиба.

Примерный вид кривой Гаусса изображен на рис.1.

х

Рис.1.

Найдем вид функции распределения для нормального закона:

(6.2)

Перед нами так называемый «неберущийся» интеграл, который невозможно выразить через элементарные функции. Поэтому для вычисления значений F (x) приходится пользоваться таблицами. Они составлены для случая, когда а = 0, а σ = 1.

Нормальное распределение с параметрами а = 0, σ = 1 называется нормированным, а его функция распределения.







Дата добавления: 2015-08-12; просмотров: 530. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Решение Постоянные издержки (FC) не зависят от изменения объёма производства, существуют постоянно...

ТРАНСПОРТНАЯ ИММОБИЛИЗАЦИЯ   Под транспортной иммобилизацией понимают мероприятия, направленные на обеспечение покоя в поврежденном участке тела и близлежащих к нему суставах на период перевозки пострадавшего в лечебное учреждение...

Кишечный шов (Ламбера, Альберта, Шмидена, Матешука) Кишечный шов– это способ соединения кишечной стенки. В основе кишечного шва лежит принцип футлярного строения кишечной стенки...

Опухоли яичников в детском и подростковом возрасте Опухоли яичников занимают первое место в структуре опухолей половой системы у девочек и встречаются в возрасте 10 – 16 лет и в период полового созревания...

Способы тактических действий при проведении специальных операций Специальные операции проводятся с применением следующих основных тактических способов действий: охрана...

Искусство подбора персонала. Как оценить человека за час Искусство подбора персонала. Как оценить человека за час...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия