Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Теорема Бернулли.





теорема Бернулл. Если в каждом из п независимых опытов вероятность р появления события А постоянна, то при достаточно большом числе испытаний вероят-ность того, что модуль отклонения относительной частоты появлений А в п опытах от р будет сколь угодно малым, как угодно близка к

1:

Доказательство. Введем случайные величины Х 1, Х 2, …, Хп, где Xi число появлений А в i -м опыте. При этом Xi могут принимать только два значения: 1(с вероятностью р) и 0 (с вероятностью q = 1 – p). Кроме того, рассматриваемые случайные величины попарно независимы и их дисперсии равномерно ограничены (так как D (Xi) = pq, p + q = 1, откуда pq ≤ ¼). Следовательно, к ним можно применить теорему Чебышева при Mi = p:

.

Но , так как Xi принимает значение, равное 1, при появлении А в данном опыте, и значение, равное 0, если А не произошло. Таким образом,

что и требовалось доказать.

Замечание. Из теоремы Бернулли не следует, что Речь идет лишь о вероятно-сти того, что разность относительной частоты и вероятности по модулю может стать сколь угодно малой. Разница заключается в следующем: при обычной сходимости, рассматриваемой в математическом анализе, для всех п, начиная с некоторого значения, неравенство выполняется всегда; в нашем случае могут найтись такие значения п, при которых это неравенство неверно. Этот вид сходимости называют сходимостью по вероятности.

Системы случайных величин. Закон распределения вероятностей дискретной двумерной случайной величины. Функции распределения двумерной случайной величины и ее свойства. Двумерная плотность вероятности и ее свойства.

Закон распределения дискретной двумерной случайной величины (Х, Y)имеет вид таблицы с двойным входом, задающей перечень возможных значений каждой компоненты и вероятности p (xi, yj), с которыми величина принимает значение (xi, yj):

Y Х
x 1 x 2 xi xn
y 1 p (x 1, y 1) p (x 2, y 1) p (xi, y 1) p (xn, y 1)
yj p (x 1, yj) p (x 2, yj) p (xi, yj) p (xn, yj)
ym p (x 1, ym) p (x 2, ym) p (xi, ym) p (xn, ym)

 

При этом сумма вероятностей, стоящих во всех клетках таблицы, равна 1.

Зная закон распределения двумерной случайной величины, можно найти законы распреде-ления ее составляющих. Действительно, событие Х = х 1 представляется собой сумму несовместных событий (X = x 1, Y = y 1), (X = x 1, Y = y 2),…, (X = x 1, Y = ym), поэтому

р (Х = х 1) = p (x 1, y 1) + p (x 1, y 2) +…+ p (x 1, ym) (в правой части находится сумма вероятностей, стоящих в столбце, соответствующем Х = х 1). Так же можно найти вероятности остальных возможных значений Х. Для определения вероятностей возможных значений Y нужно сложить вероятности, стоящие в строке таблицы, соответствующей Y = yj.

Функцией распределения F (x, y) двумерной случайной величины (X, Y) называется вероятность того, что X < x, a Y < y: F (х, у) = p (X < x, Y < y). (8.1)

Рис.1. Это означает, что точка (X, Y) попадет в область, заштрихованную на рис. 1, если вершина прямого угла располагается в точке (х, у). Замечание. Определение функции распределения справедливо как для непрерывной, так и для дискретной двумерной случайной величины. Свойства функции распределения. 1)0 ≤ F (x, y) ≤ 1 (так как F (x, y) является вероятностью). 2)F (x, y) есть неубывающая функция по каждому аргументу: F (x 2, y) ≥ F (x 1, y), если x 2 > x F (x, y 2) ≥ F (x, y 1), если y 2 > y 1. Доказательство. F (x 2, y) = p (X < x 2, Y < y) = p (X < x 1, Y < y) + p (x 1X < x 2, Y < y) ≥ p (X < x 1, Y < y) = F (x 1, y). Аналогично доказывается и второе утверждение. 3)Имеют место предельные соотношения: а) F (-∞, y) = 0; b) F (x, - ∞) = 0; c) F (- ∞, -∞) = 0; d) F (∞, ∞) = 1. Доказательство. События а), b) и с) невозможны (так как невозможно событие Х<- ∞ или Y <- ∞), а событие d) достоверно, откуда следует справедливость приведенных равенств. 4)При у = ∞ функция распределения двумерной случайной величины становится функцией распределения составляющей Х: F (x, ∞) = F 1(x). При х = ∞ функция распределения двумерной случайной величины становится функцией распределения составляющей Y: F (∞, y) = F 2(y). Доказательство. Так как событие Y < ∞ достоверно, то F (x, ∞) = р (Х < x) = F 1(x). Аналогично доказывается второе утверждение. Плотностью совместного распределения вероятностей (двумер-ной плотностью вероятности) непрерывной двумерной случайной величины называ-ется смешанная частная производная 2-го порядка от функции распределения . (8.2) Замечание. Двумерная плотность вероятности представляет собой предел отношения вероятности попадания случайной точки в прямоугольник со сторонами Δ х и Δ у к площади этого прямоугольника при Свойства двумерной плотности вероятности.

1)f (x, y) ≥ 0 (см. предыдущее замечание: вероятность попадания точки в прямоуголь-ник неотрицательна, площадь этого прямоугольника положительна, следовательно, предел их отношения неотрицателен). 2) (cледует из определения двумерной плотности вероятно-сти). 3) (поскольку это вероятность того, что точка попадет на плос-кость О ху, то есть достоверного события).







Дата добавления: 2015-08-12; просмотров: 428. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

БИОХИМИЯ ТКАНЕЙ ЗУБА В составе зуба выделяют минерализованные и неминерализованные ткани...

Типология суицида. Феномен суицида (самоубийство или попытка самоубийства) чаще всего связывается с представлением о психологическом кризисе личности...

ОСНОВНЫЕ ТИПЫ МОЗГА ПОЗВОНОЧНЫХ Ихтиопсидный тип мозга характерен для низших позвоночных - рыб и амфибий...

ИГРЫ НА ТАКТИЛЬНОЕ ВЗАИМОДЕЙСТВИЕ Методические рекомендации по проведению игр на тактильное взаимодействие...

Реформы П.А.Столыпина Сегодня уже никто не сомневается в том, что экономическая политика П...

Виды нарушений опорно-двигательного аппарата у детей В общеупотребительном значении нарушение опорно-двигательного аппарата (ОДА) идентифицируется с нарушениями двигательных функций и определенными органическими поражениями (дефектами)...

Studopedia.info - Студопедия - 2014-2025 год . (0.007 сек.) русская версия | украинская версия