Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Корреляционный момент и коэффициент корреляции.





Корреляционным моментом системы двух случайных величин называется второй смешанный центральный момент: Kxy = μ1,1 = M ((X – M (X))(Y – M (Y))).Для дискретных случайных величин

для непрерывных случайных величин Безразмерной характеристикой коррелированности двух случайных величин является коэффи-циент корреляции . Корреляционный момент описывает связь между составляющими двумерной случайной вели-чины. Действительно, убедимся, что для независимых Х и Y Kxy = 0. В этом случае f (x,y) = =f 1(x) f 2(y), тогда Итак, две независимые случайные величины являются и некоррелированными. Однако понятия коррелированности и зависимости не эквивалентны, а именно, величины могут быть зависимы-ми, но при этом некоррелированными. Дело в том, что коэффициент корреляции характеризует не всякую зависимость, а только линейную. В частности, если Y = aX + b, то rxy = ±1. Найдем возможные значения коэффициента корреляции. Теорема 9.1. Доказательство. Докажем сначала, что Действительно, если рассмотреть случай-ную величину и найти ее дисперсию, то получим: . Так как дисперсия всегда неотрицательна, то откуда Отсюда что и требовалось доказать.

20. Случайные функции. Понятие случайной функции. Математическое ожидание случайной функции.Если каждому возможному значению случайной величины Х соответствует одно возможное значение случайной величины Y, то Y называют функцией случайного аргу-мента Х: Y = φ;(X). Выясним, как найти закон распределения функции по известному закону распределения аргумента.1) Пусть аргумент Х – дискретная случайная величина, причем различным значениям Х соот-ветствуют различные значения Y. Тогда вероятности соответствующих значений Х и Y равны. 2) Если разным значениям Х могут соответствовать одинаковые значения Y, то вероятности значений аргумента, при которых функция принимает одно и то же значение, складываются.

3) Если Х – непрерывная случайная величина, Y = φ;(X), φ;(x) – монотонная и дифференцируемая функция, а ψ;(у) – функция, обратная к φ;(х), то плотность распределения g (y) случайно функции Y равна:







Дата добавления: 2015-08-12; просмотров: 466. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Значення творчості Г.Сковороди для розвитку української культури Важливий внесок в історію всієї духовної культури українського народу та її барокової літературно-філософської традиції зробив, зокрема, Григорій Савич Сковорода (1722—1794 pp...

Постинъекционные осложнения, оказать необходимую помощь пациенту I.ОСЛОЖНЕНИЕ: Инфильтрат (уплотнение). II.ПРИЗНАКИ ОСЛОЖНЕНИЯ: Уплотнение...

Приготовление дезинфицирующего рабочего раствора хлорамина Задача: рассчитать необходимое количество порошка хлорамина для приготовления 5-ти литров 3% раствора...

Меры безопасности при обращении с оружием и боеприпасами 64. Получение (сдача) оружия и боеприпасов для проведения стрельб осуществляется в установленном порядке[1]. 65. Безопасность при проведении стрельб обеспечивается...

Весы настольные циферблатные Весы настольные циферблатные РН-10Ц13 (рис.3.1) выпускаются с наибольшими пределами взвешивания 2...

Хронометражно-табличная методика определения суточного расхода энергии студента Цель: познакомиться с хронометражно-табличным методом опреде­ления суточного расхода энергии...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия