Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Z-преобразование





В данном разделе приводятся необходимые для дальнейшего рассмотрения сведения о математическом аппарате Z -преобра­зования. Более подробная информация содержится в [1].

Z -преобразованием (прямым) последовательности называют следующий ряд

, (1.22)

где оригинал – вещественная или комплексная последовательность, для которой выполняется условие (1.9);

z - изображение последовательности , результат Z -преобразования.

Z -преобразование однозначно связано с последовательностью и справедливо только в области абсолютной сходимости ряда

. (1.23)

Z- преобразование (1.22) получено на основе известного дискретного преобразования Лапласа

в результате замены переменных

, (1.24)

где p – оператор Лапласа

. (1.25)

Определим взаимосвязь между комплексными p - и z -плоско­стями.

Подставляя p (1.25) в (1.24), получаем

, (1.26)

после чего, раскрывая по формуле Эйлера

,

имеем вещественную x и мнимую части комплексной переменной z (рис. 1.10):

; (1.27)

. (1.28)

Комплексная переменная z может быть представлена в двух формах:

- алгебраической

; (1.29)

- показательной

, (1.30)

где радиус является модулем, а угол j – аргументом переменной z (1.29):

; (1.31)

. (1.32)

Рис. 1.10. Комплексные p - и z -плоскости

Соответственно, положение произвольной точки на комплексной z -плоскости может указываться:

- координатами (x;h) – в декартовой системе координат;

- полярными координатами (радиусом r и углом j) – в полярной системе координат.

Сопоставляя соотношения (1.26) и (1.30), выразим значения радиуса r и угла j через s и w соответственно:

; (1.33)

. (1.34)

Равенство (1.34) указывает на то, что угол j точки на комплексной z -плоскости есть не что иное, как нормированная частота (1.8), измеряемая в радианах.

В силу периодичности экспоненты угол j (1.34) комплексной переменной z определяется с точностью до слагаемого 2p k, где k – любое целое число:

,

однако, как правило, по умолчанию речь идет о главном значении аргумента из диапазона

.







Дата добавления: 2015-08-12; просмотров: 410. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Краткая психологическая характеристика возрастных периодов.Первый критический период развития ребенка — период новорожденности Психоаналитики говорят, что это первая травма, которую переживает ребенок, и она настолько сильна, что вся последую­щая жизнь проходит под знаком этой травмы...

РЕВМАТИЧЕСКИЕ БОЛЕЗНИ Ревматические болезни(или диффузные болезни соединительно ткани(ДБСТ))— это группа заболеваний, характеризующихся первичным системным поражением соединительной ткани в связи с нарушением иммунного гомеостаза...

Решение Постоянные издержки (FC) не зависят от изменения объёма производства, существуют постоянно...

Мелоксикам (Мовалис) Групповая принадлежность · Нестероидное противовоспалительное средство, преимущественно селективный обратимый ингибитор циклооксигеназы (ЦОГ-2)...

Менадиона натрия бисульфит (Викасол) Групповая принадлежность •Синтетический аналог витамина K, жирорастворимый, коагулянт...

Разновидности сальников для насосов и правильный уход за ними   Сальники, используемые в насосном оборудовании, служат для герметизации пространства образованного кожухом и рабочим валом, выходящим через корпус наружу...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия