Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Z-преобразование





В данном разделе приводятся необходимые для дальнейшего рассмотрения сведения о математическом аппарате Z -преобра­зования. Более подробная информация содержится в [1].

Z -преобразованием (прямым) последовательности называют следующий ряд

, (1.22)

где оригинал – вещественная или комплексная последовательность, для которой выполняется условие (1.9);

z - изображение последовательности , результат Z -преобразования.

Z -преобразование однозначно связано с последовательностью и справедливо только в области абсолютной сходимости ряда

. (1.23)

Z- преобразование (1.22) получено на основе известного дискретного преобразования Лапласа

в результате замены переменных

, (1.24)

где p – оператор Лапласа

. (1.25)

Определим взаимосвязь между комплексными p - и z -плоско­стями.

Подставляя p (1.25) в (1.24), получаем

, (1.26)

после чего, раскрывая по формуле Эйлера

,

имеем вещественную x и мнимую части комплексной переменной z (рис. 1.10):

; (1.27)

. (1.28)

Комплексная переменная z может быть представлена в двух формах:

- алгебраической

; (1.29)

- показательной

, (1.30)

где радиус является модулем, а угол j – аргументом переменной z (1.29):

; (1.31)

. (1.32)

Рис. 1.10. Комплексные p - и z -плоскости

Соответственно, положение произвольной точки на комплексной z -плоскости может указываться:

- координатами (x;h) – в декартовой системе координат;

- полярными координатами (радиусом r и углом j) – в полярной системе координат.

Сопоставляя соотношения (1.26) и (1.30), выразим значения радиуса r и угла j через s и w соответственно:

; (1.33)

. (1.34)

Равенство (1.34) указывает на то, что угол j точки на комплексной z -плоскости есть не что иное, как нормированная частота (1.8), измеряемая в радианах.

В силу периодичности экспоненты угол j (1.34) комплексной переменной z определяется с точностью до слагаемого 2p k, где k – любое целое число:

,

однако, как правило, по умолчанию речь идет о главном значении аргумента из диапазона

.







Дата добавления: 2015-08-12; просмотров: 410. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Различие эмпиризма и рационализма Родоначальником эмпиризма стал английский философ Ф. Бэкон. Основной тезис эмпиризма гласит: в разуме нет ничего такого...

Индекс гингивита (PMA) (Schour, Massler, 1948) Для оценки тяжести гингивита (а в последующем и ре­гистрации динамики процесса) используют папиллярно-маргинально-альвеолярный индекс (РМА)...

Методика исследования периферических лимфатических узлов. Исследование периферических лимфатических узлов производится с помощью осмотра и пальпации...

Основные разделы работы участкового врача-педиатра Ведущей фигурой в организации внебольничной помощи детям является участковый врач-педиатр детской городской поликлиники...

Ученые, внесшие большой вклад в развитие науки биологии Краткая история развития биологии. Чарльз Дарвин (1809 -1882)- основной труд « О происхождении видов путем естественного отбора или Сохранение благоприятствующих пород в борьбе за жизнь»...

Этапы трансляции и их характеристика Трансляция (от лат. translatio — перевод) — процесс синтеза белка из аминокислот на матрице информационной (матричной) РНК (иРНК...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия