Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

КИХ- и БИХ-системы





Рассмотрим особенности импульсных характеристик рекурсивных и нерекурсивных ЛДС. С этой целью приведем примеры вычисления ИХ по заданному разностному уравнению, решая его методом прямой подстановки при нулевых начальных условиях.

Пример 1.3. Вычислить импульсную характеристику нерекурсивной ЛДС второго порядка, соотношение вход/выход которой описывается разностным уравнением (1.20):

.

Решение. Согласно определению ИХ – это реакция на цифровой единичный импульс (рис. 1.6), поэтому, выполнив замену

(1.21)

перепишем РУ в виде

и вычислим отсчеты ИХ методом прямой подстановки при нулевых начальных условиях (см. п. 1.3.2):

;

;

;

;

при .

Распространяя полученные результаты на ИХ нерекурсивной ЛДС произвольного порядка, можно сделать следующие выводы:

- импульсная характеристика нерекурсивной ЛДС имеет конечную длительность;

- значения отсчетов ИХ равны коэффициентам разностного уравнения

, при .

Поэтому нерекурсивные ЛДС называют системами с конечной импульсной характеристикой (КИХ-системами).

Пример 1.4. Вычислить импульсную характеристику рекурсивной ЛДС первого порядка, соотношение вход/выход которой описывается разностным уравнением

.

Решение. Выполнив замену (1.21), перепишем РУ в виде

и вычислим отсчеты ИХ методом прямой подстановки при нулевых начальных условиях:

;

;

;

.

Вычисления можно продолжать бесконечно по формуле

,

Распространяя полученные результаты на ИХ рекурсивной ЛДС произвольного порядка, можно сделать вывод: импульсная характеристика рекурсивной ЛДС имеет бесконечную длительность.

Поэтому рекурсивные ЛДС называют системами с бесконечной импульсной характеристикой (БИХ-системами).







Дата добавления: 2015-08-12; просмотров: 663. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

В теории государства и права выделяют два пути возникновения государства: восточный и западный Восточный путь возникновения государства представляет собой плавный переход, перерастание первобытного общества в государство...

Закон Гука при растяжении и сжатии   Напряжения и деформации при растяжении и сжатии связаны между собой зависимостью, которая называется законом Гука, по имени установившего этот закон английского физика Роберта Гука в 1678 году...

Характерные черты официально-делового стиля Наиболее характерными чертами официально-делового стиля являются: • лаконичность...

Менадиона натрия бисульфит (Викасол) Групповая принадлежность •Синтетический аналог витамина K, жирорастворимый, коагулянт...

Разновидности сальников для насосов и правильный уход за ними   Сальники, используемые в насосном оборудовании, служат для герметизации пространства образованного кожухом и рабочим валом, выходящим через корпус наружу...

Дренирование желчных протоков Показаниями к дренированию желчных протоков являются декомпрессия на фоне внутрипротоковой гипертензии, интраоперационная холангиография, контроль за динамикой восстановления пассажа желчи в 12-перстную кишку...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия