Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Оценка устойчивости по импульсной характеристике





Существуют два критерия устойчивости ЛДС. Один из них позволяет оценить устойчивость ЛДС по ее импульсной характеристике во временной области, другой – по z -изображению этой характеристики в z -области (см. п. 1.4). Выбор критерия зависит от удобства его практического использования.

Критерий, позволяющей оценить устойчивость ЛДС по ее импульсной характеристике, формулируется следующим образом: для того чтобы ЛДС была устойчива, необходимо и достаточно выполнения условия абсолютной сходимости ряда

. (1.21а)

Данный критерий устойчивости свидетельствует о том, что нерекурсивные ЛДС (КИХ-системы) всегда устойчивы, поскольку их импульсная характеристика конечна.

Прежде чем делать вывод об устойчивости рекурсивных ЛДС, рассмотрим простой пример.

Пример 1.5. Определить, устойчива ли рекурсивная ЛДС, импульсная характеристика которой описывается дискретной экспонентой (1.6)

Решение. Подставив данную ИХ в правую часть критерия (1.21а), получим ряд

,

представляющий собой сумму бесконечной геометрической прогрессии

, .

Как известно, сумма такого ряда в области сходимости, т. е. при , имеет конечный предел, равный

.

В этом случае импульсная характеристика представляет собой затухающую экспоненту (см. рис. 1.3), а ЛДС согласно критерию (1.21а) является устойчивой.

Вне указанной области, т. е. при , сумма бесконечной геометрической прогрессии не имеет конечного предела, ряд является расходящимся

,

а ЛДС по критерию (1.21а) – неустойчивой.

В общем случае относительно устойчивости БИХ-систем можно сделать следующие выводы:

- рекурсивные ЛДС (БИХ-системы) требуют проверки на устойчивость,

- импульсная характеристика устойчивой ЛДС имеет характер затухающей функции времени.

1.4. Описание линейных дискретных систем
в z-области

В п. 1.3 рассматривалось описание ЛДС во временной области: импульсная характеристика и соотношение вход/выход в виде формулы свертки либо разностного уравнения. Здесь рассматривается их отображение в z - области.

Описание ЛДС в z -области позволяет:

- ввести фундаментальное для теории линейных систем понятие передаточной функции;

- перейти от разностных уравнений к алгебраическим;

- упростить анализ устойчивости;

- обеспечить автоматический переход к частотным характеристикам и многое другое.

Прежде чем перейти к описанию ЛДС в z -области, рассмотрим математический аппарат Z -преобразования.







Дата добавления: 2015-08-12; просмотров: 971. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

ТЕРМОДИНАМИКА БИОЛОГИЧЕСКИХ СИСТЕМ. 1. Особенности термодинамического метода изучения биологических систем. Основные понятия термодинамики. Термодинамикой называется раздел физики...

Травматическая окклюзия и ее клинические признаки При пародонтите и парадонтозе резистентность тканей пародонта падает...

Подкожное введение сывороток по методу Безредки. С целью предупреждения развития анафилактического шока и других аллергических реак­ций при введении иммунных сывороток используют метод Безредки для определения реакции больного на введение сыворотки...

Выработка навыка зеркального письма (динамический стереотип) Цель работы: Проследить особенности образования любого навыка (динамического стереотипа) на примере выработки навыка зеркального письма...

Словарная работа в детском саду Словарная работа в детском саду — это планомерное расширение активного словаря детей за счет незнакомых или трудных слов, которое идет одновременно с ознакомлением с окружающей действительностью, воспитанием правильного отношения к окружающему...

Правила наложения мягкой бинтовой повязки 1. Во время наложения повязки больному (раненому) следует придать удобное положение: он должен удобно сидеть или лежать...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия