Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Вычисление реакции методом прямой подстановки





n Воздействие Реакция
  x (0) = 1 y (0) = x (0) –0,5 y (–1) = 1 – 0,5·0 = 1
  x (1) = 0,1 y (1) = x (1) – 0,5 y (0) = 0,1 – 0,5·1 = 0,1 – 0,5= –0,4
  x (2) =0,01 y (2) = x (2) – 0,5 y (1) = 0,01 – 0,5·(–0,4) = 0,01 + 0,2=0,21
  x (3) = 0,001 y (3) = x (3) – 0,5 y (2) = 0,001 – 0,5·0,21 = 0,001 – 0,105 = = –0,104
  x (4) = 0,0001 y (4) = x (4) – 0,5 y (3) = 0,0001 – 0,5·(–0,104) = = 0,0001+ 0,052 = 0,0521

1.3.3. Рекурсивные и нерекурсивные
линейные дискретные системы

Линейная дискретная система называется рекурсивной, если хотя бы один из коэффициентов ak разностного уравнения (1.15) не равен нулю:

хотя бы для одного из значений k.

Порядком рекурсивной ЛДС называют порядок РУ (1.15), т. е. .

Согласно (1.15) реакция y (n) рекурсивной ЛДС в каждый момент времени n определяется:

- текущим отсчетом воздействия x (n);

- предысторией воздействия ;

- предысторией реакции .

Примеры разностных уравнений рекурсивной ЛДС:

- первого порядка

; (1.16)

- второго порядка

.(1.17)

Линейная дискретная система называется нерекурсивной, если все коэффициенты разностного уравнения (1.15) равны нулю:

, .

Для нерекурсивной ЛДС разностные уравнения (1.14)–(1.15) принимают вид соответственно

; (1.18)

. (1.19)

Порядок нерекурсивной ЛДС равен .

Согласно РУ (1.19) реакция нерекурсивной ЛДС в каждый момент времени n определяется:

- текущим отсчетом воздействия ;

- предысторией воздействия .

Пример РУ нерекурсивной ЛДС второго порядка:

. (1.20)







Дата добавления: 2015-08-12; просмотров: 477. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Случайной величины Плотностью распределения вероятностей непрерывной случайной величины Х называют функцию f(x) – первую производную от функции распределения F(x): Понятие плотность распределения вероятностей случайной величины Х для дискретной величины неприменима...

Схема рефлекторной дуги условного слюноотделительного рефлекса При неоднократном сочетании действия предупреждающего сигнала и безусловного пищевого раздражителя формируются...

Уравнение волны. Уравнение плоской гармонической волны. Волновое уравнение. Уравнение сферической волны Уравнением упругой волны называют функцию , которая определяет смещение любой частицы среды с координатами относительно своего положения равновесия в произвольный момент времени t...

Словарная работа в детском саду Словарная работа в детском саду — это планомерное расширение активного словаря детей за счет незнакомых или трудных слов, которое идет одновременно с ознакомлением с окружающей действительностью, воспитанием правильного отношения к окружающему...

Правила наложения мягкой бинтовой повязки 1. Во время наложения повязки больному (раненому) следует придать удобное положение: он должен удобно сидеть или лежать...

ТЕХНИКА ПОСЕВА, МЕТОДЫ ВЫДЕЛЕНИЯ ЧИСТЫХ КУЛЬТУР И КУЛЬТУРАЛЬНЫЕ СВОЙСТВА МИКРООРГАНИЗМОВ. ОПРЕДЕЛЕНИЕ КОЛИЧЕСТВА БАКТЕРИЙ Цель занятия. Освоить технику посева микроорганизмов на плотные и жидкие питательные среды и методы выделения чис­тых бактериальных культур. Ознакомить студентов с основными культуральными характеристиками микроорганизмов и методами определения...

Studopedia.info - Студопедия - 2014-2024 год . (0.012 сек.) русская версия | украинская версия