Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Вычисление реакции методом прямой подстановки





n Воздействие Реакция
  x (0) = 1 y (0) = x (0) –0,5 y (–1) = 1 – 0,5·0 = 1
  x (1) = 0,1 y (1) = x (1) – 0,5 y (0) = 0,1 – 0,5·1 = 0,1 – 0,5= –0,4
  x (2) =0,01 y (2) = x (2) – 0,5 y (1) = 0,01 – 0,5·(–0,4) = 0,01 + 0,2=0,21
  x (3) = 0,001 y (3) = x (3) – 0,5 y (2) = 0,001 – 0,5·0,21 = 0,001 – 0,105 = = –0,104
  x (4) = 0,0001 y (4) = x (4) – 0,5 y (3) = 0,0001 – 0,5·(–0,104) = = 0,0001+ 0,052 = 0,0521

1.3.3. Рекурсивные и нерекурсивные
линейные дискретные системы

Линейная дискретная система называется рекурсивной, если хотя бы один из коэффициентов ak разностного уравнения (1.15) не равен нулю:

хотя бы для одного из значений k.

Порядком рекурсивной ЛДС называют порядок РУ (1.15), т. е. .

Согласно (1.15) реакция y (n) рекурсивной ЛДС в каждый момент времени n определяется:

- текущим отсчетом воздействия x (n);

- предысторией воздействия ;

- предысторией реакции .

Примеры разностных уравнений рекурсивной ЛДС:

- первого порядка

; (1.16)

- второго порядка

.(1.17)

Линейная дискретная система называется нерекурсивной, если все коэффициенты разностного уравнения (1.15) равны нулю:

, .

Для нерекурсивной ЛДС разностные уравнения (1.14)–(1.15) принимают вид соответственно

; (1.18)

. (1.19)

Порядок нерекурсивной ЛДС равен .

Согласно РУ (1.19) реакция нерекурсивной ЛДС в каждый момент времени n определяется:

- текущим отсчетом воздействия ;

- предысторией воздействия .

Пример РУ нерекурсивной ЛДС второго порядка:

. (1.20)







Дата добавления: 2015-08-12; просмотров: 477. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Экспертная оценка как метод психологического исследования Экспертная оценка – диагностический метод измерения, с помощью которого качественные особенности психических явлений получают свое числовое выражение в форме количественных оценок...

В теории государства и права выделяют два пути возникновения государства: восточный и западный Восточный путь возникновения государства представляет собой плавный переход, перерастание первобытного общества в государство...

Закон Гука при растяжении и сжатии   Напряжения и деформации при растяжении и сжатии связаны между собой зависимостью, которая называется законом Гука, по имени установившего этот закон английского физика Роберта Гука в 1678 году...

Принципы, критерии и методы оценки и аттестации персонала   Аттестация персонала является одной их важнейших функций управления персоналом...

Пункты решения командира взвода на организацию боя. уяснение полученной задачи; оценка обстановки; принятие решения; проведение рекогносцировки; отдача боевого приказа; организация взаимодействия...

Что такое пропорции? Это соотношение частей целого между собой. Что может являться частями в образе или в луке...

Studopedia.info - Студопедия - 2014-2026 год . (0.01 сек.) русская версия | украинская версия