Теория вероятности возникла как наука из убеждения, что в основе массовых случайных событий лежат детерминированные закономерности. Теория вероятности изучает данные закономерности. Например: определить однозначно результат выпадения “орла” или “решки” в результате подбрасывания монеты нельзя, но при многократном подбрасывании выпадает примерно одинаковое число “орлов” и “решек”. Испытанием называется реализация определенного комплекса условий, который может воспроизводиться неограниченное число раз. При этом комплекс условий включает в себя случайные факторы, реализация которого в каждом испытании приводит к неоднозначности исхода испытания. Например: испытание - подбрасывание монеты. Результатом испытания является событие. Событие бывает: Достоверное (всегда происходит в результате испытания); Невозможное (никогда не происходит); Случайное (может произойти или не произойти в результате испытания). Например: При подбрасывании кубика невозможное событие - кубик станет на ребро, случайное событие - выпадение какой либо грани. Конкретный результат испытания называется элементарным событием. В результате испытания происходят только элементарные события. Совокупность всех возможных, различных, конкретных исходов испытаний называется пространством элементарных событий. Например: Испытание - подбрасывание шестигранного кубика. Элементарное событие - выпадение грани с “1” или “2”. Совокупность элементарных событий это пространство элементарных событий. Сложным событием называется произвольное подмножество пространства элементарных событий. Сложное событие в результате испытания наступает тогда и только тогда, когда в результате испытаний произошло элементарное событие, принадлежащее сложному. Таким образом, если в результате испытания может произойти только одно элементарное событие, то в результате испытания происходят все сложные события, в состав которых входят эти элементарные. Например: испытание - подбрасывание кубика. Элементарное событие - выпадение грани с номером “1”. Сложное событие - выпадение нечетной грани. Введем следующие обозначения: А - событие; w - элементы пространства W; W - пространство элементарных событий; U - пространство элементарных событий как достоверное событие; V - невозможное событие. Иногда для удобства элементарные события будем обозначать Ei, Qi. Операции над событиями. 1. Событие C называется суммой A B, если оно состоит из всех элементарных событий, входящих как в A, так и в B. При этом если элементарное событие входит и в A, и в B, то в C оно входит один раз. В результате испытания событие C происходит тогда, когда произошло событие, которое входит или в A или в B. Сумма произвольного количества событий состоит из всех элементарных событий, которые входят в одно из Ai, i=1,., m. 2. Событие C произведением A и B, если оно состоит из всех элементарных событий, входящих и в A, и в B. Произведением произвольного числа событий называется событие состоящее из элементарных событий, входящих во все Ai, i=1,., m. 3. Разностью событий A-B называется событие C, состоящее из всех элементарных событий, входящих в A, но не входящих в B. 4. Событие называется противоположным событию A, если оно удовлетворяет двум свойствам.