Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Постановка задачи. Задача эквивалентности ставок формулируется следующим образом.





Задача эквивалентности ставок формулируется следующим образом.

Предположим, что один банк начисляет проценты по формуле (6.9), а второй – по формуле (6.10). Тогда при одинаковом конечном вкладе эти формулы можно приравнять друг другу.

 

. (6.18)

Если равны и начальные вклады, то

. (6.19)

В уравнение (6.19) входит три параметра. Зная любые два из них, можно найти и третий. Поэтому возможны три взаимно обратные задачи:

а) По известному времени вклада и величине простой ставки найти значение сложной ставки, при которой вклады будут равны.

б) По известному времени вклада и величине сложной ставки найти значение простой ставки, при которой вклады сравняются.

в) По известным значениям простой и сложной ставок найти время, при котором вклады сравняются.

Первые две задачи можно решить, если из уравнения (6.19) выделить нужный параметр как функцию от остальных параметров. Например, для первой задачи:

. (6.20)

Однако для третьей задачи это невозможно, т.к. уравнение (6.17) относительно времени аналитически неразрешимо. Поэтому его следует переписать в виде

. (6.21)

 

и решить относительно t каким–то иным способом.

В Excel для этих целей служит средство «Подбор параметра». Математической основой данного средства является один из численных методов решения уравнений.

Но у этих методов имеется один существенный недостаток – все они требуют указания какого–то начального значения корня. При этом начальное значение должно быть как можно ближе к искомому корню. Все это не так существенно, если уравнение имеет один корень. Если же корней несколько, то неопытный пользователь может очень долго подбирать начальные значения.

Все это имеет место в рассматриваемом случае. Здесь уравнение (6.21) имеет два корня, причем первый – тривиальный (при t=0). Второй же корень может быть либо положительным, либо отрицательным – все зависит от соотношения ставок.

Если ставка по простым процентам больше ставки по сложным процентам, то второй (и нужный нам) корень является положительным. Если же имеет место обратная ситуация, то второй корень будет отрицательным.

Другими словами для рассматриваемой пары уравнений задача эквивалентности ставок имеет смысл только при is < ic. В принципе об этом будущим экономистам говорится в соответствующих курсах, но при практическом решении задачи это почему–то забывается.

Поэтому выполнять свои варианты заданий рекомендуется по следующей схеме:

1. Рассчитать таблицу значений функции на выбранном интервале времен и на ее основе построить график функции. По данным таблицы или виду графика определить примерное положение второго корня.

Для рассматриваемого примера результат первого этапа приведен в табл. 6.5 и на рис. 6.1. Для получения таблицы в ячейку C6 введена формула:

 

=1+ $C$2*B6 – (1+$C$3)^B6.

 

Эта формула затем была скопирована в ячейки C7:C20.

 

 

Рис.6.1. График функции (6.17)

 

Таблица 6.5.

  A B C D
         
    Простая ставка 0,05  
    Сложная ставка 0,04  
         
    T Y  
         
      0,01  
      0,0184  
      0,025136  
      0,030141  
      0,033347  
      0,034681  
      0,034068  
      0,031431  
      0,026688  
      0,019756  
      0,010546  
      –0,00103  
      –0,01507  
      –0,03168  
         

 

 

 

Из таблицы и соответствующего ей рисунка следует, что функция (6.19) пересекает ось (т.е. имеет второй корень) при времени, примерно равном 12.

2. Полученное приближенное значение второго корня следует вводить в качестве начального при использовании средства «Подбор параметра» (рис. 6.2).

Для рассматриваемого примера:

 

Рис. 6.2. Окно Подбор параметра

 

В результате получим, что второй корень равен 11,88 лет.

 

Варианты заданий

Решить задачу об эквивалентности ставок для следующих сочетаний уравнений.

 

Вариант Сочетание уравнений Вариант Сочетание уравнений
  (6.9) – (6.11)   (6.11) – (6.13)
  (6.9) – (6.12)   (6.13) – (6.13)
  (6.9) – (6.13)   (6.13) – (6.14)
  (6.9) – (6.14)   (6.13) – (6.15)
  (6.9) – (6.15)   (6.13) – (6.17)
  (6.9) – (6.17)   (6.14) – (6.16)
  (6.10) – (6.13)   (6.15) – (6.16)
  (6.10) – (6.16)   (6.16) – (6.17)

 







Дата добавления: 2015-08-12; просмотров: 539. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Основные разделы работы участкового врача-педиатра Ведущей фигурой в организации внебольничной помощи детям является участковый врач-педиатр детской городской поликлиники...

Ученые, внесшие большой вклад в развитие науки биологии Краткая история развития биологии. Чарльз Дарвин (1809 -1882)- основной труд « О происхождении видов путем естественного отбора или Сохранение благоприятствующих пород в борьбе за жизнь»...

Этапы трансляции и их характеристика Трансляция (от лат. translatio — перевод) — процесс синтеза белка из аминокислот на матрице информационной (матричной) РНК (иРНК...

ФАКТОРЫ, ВЛИЯЮЩИЕ НА ИЗНОС ДЕТАЛЕЙ, И МЕТОДЫ СНИЖЕНИИ СКОРОСТИ ИЗНАШИВАНИЯ Кроме названных причин разрушений и износов, знание которых можно использовать в системе технического обслуживания и ремонта машин для повышения их долговечности, немаловажное значение имеют знания о причинах разрушения деталей в результате старения...

Различие эмпиризма и рационализма Родоначальником эмпиризма стал английский философ Ф. Бэкон. Основной тезис эмпиризма гласит: в разуме нет ничего такого...

Индекс гингивита (PMA) (Schour, Massler, 1948) Для оценки тяжести гингивита (а в последующем и ре­гистрации динамики процесса) используют папиллярно-маргинально-альвеолярный индекс (РМА)...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия