Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Б. Дисконтирование





Дисконтированием называется исчисление первоначальной суммы денег на основании ее конечной величины. Таким образом, дисконтирование – обратная операция по отношению к нахождению будущей стоимости.

Например, если кто-то хочет иметь на своем счете 150 руб. через год при процентной ставке 50% годовых, то сегодня ему надо вложить в банк 100 руб. Расчет прост:

В общем случае вопрос звучит так: какую сумму денег (K0) надо положить сегодня на счет, чтобы через год там было K1 руб., если процентная ставка составляет i% годовых? Ответ:

Поставим вопрос в самом общем виде: какую сумму денег надо положить сегодня в банк, чтобы через n лет на счете было Kn руб.? Теперь ответ будет зависеть от того, какой процент начисляет банк: простой или сложный.

Если процент простой, то:

Если процент сложный, то:

Путем дисконтирования можно определить, какой сумме денег сегодня эквивалентна некоторая сумма, которая будет получена в будущем (FV). Тем самым мы можем рассчитать приведенную стоимость будущих денежных поступлений (PV).

Важнейший постулат финансового анализа состоит в том, что деньги имеют различную временную ценность: 100 руб. сегодня предпочтительнее 100 руб., которые будут получены позднее. Это объясняется тем, что сегодняшние деньги индивид уже может как-то использовать, повышая свое благосостояние. Самая простая возможность – положить деньги в банк, и тогда их сумма возрастет.

Пусть банк платит по вкладу 20% годовых. Следовательно, 100 руб. сегодня превратятся в 120 руб. спустя год. Если такие условия устраивают индивида, и он вкладывает деньги, то это означает, что он готов отказаться от 100 руб. сегодня ради 120 руб. через год. Иными словами, 120 руб., получаемых год спустя, для него как минимум равны 100 руб. сегодня. В этом случае результат получается дисконтированием 120 руб. по процентной ставке:

В общем виде, обозначив сумму, получаемую через год – FV1, получаем ее приведенную стоимость:

Таким образом, при начислении сложных процентов приведенная стоимость денег, которые будут получены через n лет (FVn), рассчитывается по формуле:

Усложним модель. Предположим, вы решили сдать квартиру на 5 лет. По договору в конце каждого года арендатор будет платить вам 3000 долл. Сколько денег вы получите за все время аренды? Ответ: 15000 долл. по сути не верен, ибо нельзя забывать, что деньги, получение которых растянуто во времени, имеют не одинаковую ценность. В частности, 3000 долл., причитающиеся вам через год, совсем не равны той же сумме, получаемой через 5 лет. Поэтому просто суммировать или вычитать можно только те деньги, которые пришли или ушли примерно в одно и то же время.

В Вашем случае все будущие доходы надо сначала привести к сегодняшнему дню путем дисконтирования по банковской процентной ставке и только потом их суммировать. В результате будет получена приведенная стоимость всей величины будущих доходов:

Таким образом, если некто будет ежегодно получать некоторые суммы денег (FVj) руб. в течение n лет, приведенная стоимость всей суммы будущих поступлений составит:

Если доход, получаемый каждый год постоянен (FV), имеем геометрическую прогрессию со знаменателем 1/(1 +i):

Отсюда:

Если число лет бесконечно велико (n® ¥), формула упрощается:

На основе дисконтирования можно решать задачи на погашение займов. Пусть некто взял заем под сложные i% годовых. Выплата в j-ый год составляет FVj. Продисконтировав эту выплату по процентной ставке, находим ее приведенную стоимость:

В момент, когда сумма всех дисконтированных выплат становится равна первоначальному долгу, последний считается погашенным.

В качестве примера предположим, что взаймы взяты 100 руб. на 2 года под 100% (i = 1) годовых. В первый год заемщик выплатил кредитору 100 руб. В результате погашены только 50 руб. займа, поскольку:

Во второй год выплачено еще 200 руб. Продисконтировав эту сумму, находим:

Таким образом, сумма дисконтированных выплат за два года составила величину займа – 100 руб. (50 + 50 = 100). Долг погашен.

 







Дата добавления: 2015-08-12; просмотров: 511. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

ПУНКЦИЯ И КАТЕТЕРИЗАЦИЯ ПОДКЛЮЧИЧНОЙ ВЕНЫ   Пункцию и катетеризацию подключичной вены обычно производит хирург или анестезиолог, иногда — специально обученный терапевт...

Ситуация 26. ПРОВЕРЕНО МИНЗДРАВОМ   Станислав Свердлов закончил российско-американский факультет менеджмента Томского государственного университета...

Различия в философии античности, средневековья и Возрождения ♦Венцом античной философии было: Единое Благо, Мировой Ум, Мировая Душа, Космос...

Опухоли яичников в детском и подростковом возрасте Опухоли яичников занимают первое место в структуре опухолей половой системы у девочек и встречаются в возрасте 10 – 16 лет и в период полового созревания...

Способы тактических действий при проведении специальных операций Специальные операции проводятся с применением следующих основных тактических способов действий: охрана...

Искусство подбора персонала. Как оценить человека за час Искусство подбора персонала. Как оценить человека за час...

Studopedia.info - Студопедия - 2014-2025 год . (0.014 сек.) русская версия | украинская версия