Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Метод наименьших квадратов





 

Этот метод является одним из наиболее распространенных приемов статистической обработки экспериментальных данных, относящихся к различным функциональным зависимостям физических величин друг от друга. В том числе, он применим к линейной зависимости (2.26), и позволяет получить достоверные оценки ее параметров: коэффициента наклона a и сдвига относительно начала координат b, а также оценить их погрешности. Дело в том, что через одну и ту же совокупность точек на плоскости можно провести различные прямые, причем часть экспериментальных точек на эту прямую не попадает. Задача заключается в отыскании такой прямой, для которой все не попавшие на нее точки отстоят на минимальные расстояния (по сути это абсолютные погрешности измерений). Так как точки будут располагаться по обе стороны от проведенной прямой, то погрешности будут и положительными и отрицательными, и для нахождения их совокупного влияния каждую из них необходимо возвести в квадрат (чтобы избежать компенсации при сложении) и затем сложить. Полученная сумма должна быть минимальной.

Рассмотрим статистическую модель эксперимента, в котором исследуют линейную зависимость. Пусть проведено n парных измерений величин x и y: xi, yi, где i = 1,..., n. По экспериментальным данным необходимо найти оценки параметров a и b, а также оценки их дисперсий sa2 и sb2.

Для практических расчетов методом наименьших квадратов удобно использовать следующий алгоритм:

1. Вычислить значения следующих средних величин:

, , , , .

2. Определить оптимальные значения коэффициентов а и b:

, .

3. Определить квадрат среднего квадратичного отклонения σ;2:

.

4.Определить квадраты средних квадратичных отклонений σа 2 и σb 2:

, .

5. Вычислить погрешности и .

Эти выражения удобны и для прямых расчетов на калькуляторе, и для программирования вычислений при использовании компьютера. Многие прикладные компьютерные программы (MathCAD, Excel и др.) содержат метод наименьших квадратов. Часто после введения экспериментальных точек они строят график зависимости и тут же автоматически обрабатывают его для определения оценок параметров и их погрешностей.


Контрольные вопросы

1. Что такое измерение? Чем отличаются прямые и косвенные измерения?

2. Какие погрешности называются случайными? систематичес­кими? промахами? Приведите примеры.

3. Расскажите, в какой последовательности производится обработка результатов прямых измерений.

4. Как производятся обработка результатов косвенных изме­рений? Напишите выражение для абсолютной погрешности, относительной погрешности при обработке результатов косвенных измерений.

5. С каким числом значащих цифр записывается погрешность результата измерений и сам результат? С каким числом зна­чащих цифр достаточно производить вычисления погрешностей?

6. Что такое график?

7. Как выбирают и наносят на график масштаб?

8. Как следует проводить кривую по нанесенным на график экспериментальным точкам? Почему?

9. В чем достоинства графического представления результатов эксперимента?

10. В чем смысл линеаризации экспериментальных зависимостей? Опишите последовательность действий при графической обработке линейной зависимости.

11. Что такое метод парных точек? Как его применить на практике?

12. В чем сущность метода наименьших квадратов? Каков его алгоритм?


ИСПОЛЬЗОВАННАЯ ЛИТЕРАТУРА

 

1. Селиванов, М.Н., Фридман, А.Э., Кудряшова Ж.Ф. Качество измерений. Метрологическая справочная книга. – Л.: Лениздат, 1987.

2. Демкович, В.П., Прайсман Н.Я. Приближенные вычисления в школьном курсе физики. – М.: Просвещение, 1967.

3. Зайдель, А.Н. Элементарные оценки ошибок измерений. Изд. 3-е. – Л.: Наука, 1968.

4. Каменецкий, С.Е. Обработка результатов измерений при выполнении лабораторных работ. – Физика в школе, 1961. – № 1.

5. Поттер, Д. Вычислительные методы в физике. – М.: Наука, 1978.

6. Степанов, С.В., Смирнов А.В. Лабораторный практикум по физике / Под ред. Степанова С.В. – М.: ФОРУМ: ИНФРА-М, 2003.

7. Фетисов, В.А. Оценка точности измерений в курсе физики средней школы. Пособие для учителей. – М.: Просвещение, 1974.

8. Тартаковский, Д.Ф. Метрология, стандартизация и технические средства измерений: Учеб. для вузов. – М.: Высш. шк., 2001.

9. Лабораторные занятия по физике: Учебное пособие / Л.Л. Гольдин, Ф.Ф. Игошин, С.М. Козел и др.: Под ред. Гольдина Л.Л. – М.: Наука. Главная редакция физико-математической литературы, 1983.

 

РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА

 

1. Гмурман, В.Е. Элементы приближенных вычислений. – М: Высшая школа, 2005.

2. Колемаев, В.А., Калинина, В.Н. Теория вероятностей и математическая статистика: Учебник / Под ред. Колемаева В.А. – М.: ИНФРА-М, 1999.

3. Сизиков, В. С., Математические методы обработки результатов измерений. – М: Политехника, 2001 год.

4. Кузнецов, В.А., Ялунина, Г.В. Основы метрологии. – М.: Издательство стандартов, 1995.

5. Сысоев С.М. Лабораторный практикум по электричеству и магнетизму: Методические указания к лабораторным работам по курсу общей физики. Для студентов всех специальностей / Сысоев С.М., Манина Е.А., Никонова Н.О.; Под ред. С.М. Сысоева. – Сургут: Изд-во СурГУ, 2004.







Дата добавления: 2015-08-12; просмотров: 1731. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Тема: Кинематика поступательного и вращательного движения. 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью, проекция которой изменяется со временем 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью...

Условия приобретения статуса индивидуального предпринимателя. В соответствии с п. 1 ст. 23 ГК РФ гражданин вправе заниматься предпринимательской деятельностью без образования юридического лица с момента государственной регистрации в качестве индивидуального предпринимателя. Каковы же условия такой регистрации и...

Седалищно-прямокишечная ямка Седалищно-прямокишечная (анальная) ямка, fossa ischiorectalis (ischioanalis) – это парное углубление в области промежности, находящееся по бокам от конечного отдела прямой кишки и седалищных бугров, заполненное жировой клетчаткой, сосудами, нервами и...

МЕТОДИКА ИЗУЧЕНИЯ МОРФЕМНОГО СОСТАВА СЛОВА В НАЧАЛЬНЫХ КЛАССАХ В практике речевого общения широко известен следующий факт: как взрослые...

СИНТАКСИЧЕСКАЯ РАБОТА В СИСТЕМЕ РАЗВИТИЯ РЕЧИ УЧАЩИХСЯ В языке различаются уровни — уровень слова (лексический), уровень словосочетания и предложения (синтаксический) и уровень Словосочетание в этом смысле может рассматриваться как переходное звено от лексического уровня к синтаксическому...

Плейотропное действие генов. Примеры. Плейотропное действие генов - это зависимость нескольких признаков от одного гена, то есть множественное действие одного гена...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия