Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Разложите многочлены на множители (интерактивная доска)





1. a2 + 6a + 9 (перечислить и применить все шаги алгоритма)

2. x2 + y2 – 2xy (последовательно применить шаги алгоритма)

3. 16x2 + 9 – 24x( прокомментировать все выполняемые шаги алгоритма)

4. x6 +2x3+1 (уточнить первые два шага, из точное применение)

5. х2 + 3х + 9 (данный трехчлен не является квадратом двучлена, обосновать)

Задание 2:Найдите значение выражения.

У: Для чего мы раскладываем многочлены на множители? Какова практическая цель?

О: Например, для упрощения вычислений.

1. A = 2,572 - 2·2,57·1,57 +1,572

Запись на доске

Задание 3:Разложите многочлен на множители2n4 + 2n3 + n2 + 2n + 1.

У: Сколько в данном многочлене членов?

О: 5

У: А мы использовали алгоритм разложения для скольких членов многочлена?

О: Для 3- х.

У: А теперь давайте применим одновременно несколько способов разложения многочленов на множители.

У: Сгруппируем первые 2 члена многочлена и оставшиеся 3 члена многочлена. Запишите действие.

О: (2n4 + 2n3) + (n2 +2 n + 1).

У: Какой способ разложения можно применить к первой группе слагаемых?

О: Вынесение общего множителя 2n3за скобки. Что получим?Запишите.

O:2n3(n+1) + (n2 + 2n + 1)

У: Что представляет собой вторая группа слагаемых?

О: трехчлен

У: Мы можем разложить данный трехчлен на множители?

О: Да

У: Чем вы будите пользоваться?

О: Алгоритмом разложения многочлена на множители с помощью формулы квадрата суммы.

У: Что получается в результате разложения трехчлена на множители? Запишите.

О:2n3(n+1) + (n+1)2

У: Как по-другому можно представить квадрат двучлена? Запишите.

О: В виде произведения одинаковых многочленов. 2n3(n+1) +(n+1)(n+1)

У: Какой способ разложения можем применить к данному выражению? Запишите.

О: Вынесение общего множителя за скобки.(n+1)(2n3 +n+1).

У: Что представляет собой данное выражение?

О: Произведение многочленов.

У: А, что является результатом произведения многочленов?

О: Разложение многочлена на множители.

У: Итак, данное выражение 2n4 + 2n3 + n2 + 2n + 1 мы разложили на множители (n+1)(2n3 +n+1).

Дополнительное задание (применение интеграции методов разложения на множители)

n5 – n3 + n2 + 2n +1







Дата добавления: 2015-08-12; просмотров: 478. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

ТЕОРИЯ ЗАЩИТНЫХ МЕХАНИЗМОВ ЛИЧНОСТИ В современной психологической литературе встречаются различные термины, касающиеся феноменов защиты...

Этические проблемы проведения экспериментов на человеке и животных В настоящее время четко определены новые подходы и требования к биомедицинским исследованиям...

Классификация потерь населения в очагах поражения в военное время Ядерное, химическое и бактериологическое (биологическое) оружие является оружием массового поражения...

Понятие массовых мероприятий, их виды Под массовыми мероприятиями следует понимать совокупность действий или явлений социальной жизни с участием большого количества граждан...

Тактика действий нарядов полиции по предупреждению и пресечению правонарушений при проведении массовых мероприятий К особенностям проведения массовых мероприятий и факторам, влияющим на охрану общественного порядка и обеспечение общественной безопасности, можно отнести значительное количество субъектов, принимающих участие в их подготовке и проведении...

Тактические действия нарядов полиции по предупреждению и пресечению групповых нарушений общественного порядка и массовых беспорядков В целях предупреждения разрастания групповых нарушений общественного порядка (далееГНОП) в массовые беспорядки подразделения (наряды) полиции осуществляют следующие мероприятия...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия