Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Измерение автономного риска: среднеквадратическое отклонение





Чтобы быть полезной для практического использования, любая мера риска должна иметь точное определение – нам необходима мера «сжатости» распределения вероятности. Одной из таких мер является среднеквадратическое (стандартное) отклонение (СКО) – обозначается . Чем меньше квадратическое отклонение, тем более распределение вероятности «сжато» и соответственно тем ниже риск акций. Чтобы вычислить среднеквадратическое отклонение, мы выполняем действия, представленные в таблице 5.3.

Таблица 5.3

Вычисление среднеквадратического отклонения для компании «М»

ki-k (ki-k)2 (ki-k)2P1
100-15 = 85% 0,852 = 7,225 0,3 7,225 = 2167,5
15-15 = 0   0,4 0 = 0
(70)-15 = 85 7,225 0,3 7,225 = 2167,5
    Вариация = = 4335

Стандартное отклонение =

1. Вычисляем среднюю доходность:

Средняя доходность = P1k1 + P2k2+ …+ Pnkn =

Мы уже выяснили ранее, что для компании «М» k = 15%.

2. Вычисляем отклонение каждого отдельного значения доходности ki от её среднего значения k:

Отклонение = ki-k.

3. Возводим в квадрат каждое отклонение и взвешиваем полученные квадратические отклонения в соответствии с их вероятностями. Итогом является вариация доходности, как это показано в столбце 3 таблицы (формула 5.2):

Вариация = . (5.2)

4. Наконец, извлекая из вариации квадратный корень, получаем среднеквадратическое отклонение (формула 7.3):

Среднеквадратическое отклонение = (5.3)

Таким образом, среднеквадратическое (стандартное) отклонение доходности – это в определенном смысле средневзвешенное отклонение от её ожидаемого значения, и оно показывает, насколько выше или ниже ожидаемой окажется вероятная фактическая доходность. Среднеквадратическое отклонение для компании «М» согласно таблице 5.3, составляет . Выполняя тот же расчёт, находим, что среднеквадратическое отклонение для компании «А» составляет 3,87%.

Рис. 5.2. Диапазоны вероятности при нормальном распределении

Таким образом, компания «М» имеет большее среднеквадратическое отклонение доходности, что указывает на большую вероятность того, что средняя доходность не будет достигнута. Следовательно, вложение в компанию «М» вне какого-либо портфеля является более рискованным.

Если распределение вероятностей нормальное, или гауссовское то в 68,26% случаев фактическая доходность окажется в интервале 1 её СКО от среднего значения. На рисунке 5.2 отражен именно этот эффект. Кроме того, на рисунке также показаны и вероятности того, что доходность окажется в интервалах и от среднего значения. Для компании «М» k = 15% и , в то время как для компании «А» k = 15% и . Таким образом, если два распределения доходности этих акций нормальны, то с вероятностью существует 68,26% фактическая доходность компании «М» будет находиться в диапазоне 15 3,87%, или от 11,13 до 18,87%.







Дата добавления: 2015-08-12; просмотров: 597. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Виды сухожильных швов После выделения культи сухожилия и эвакуации гематомы приступают к восстановлению целостности сухожилия...

КОНСТРУКЦИЯ КОЛЕСНОЙ ПАРЫ ВАГОНА Тип колёсной пары определяется типом оси и диаметром колес. Согласно ГОСТ 4835-2006* устанавливаются типы колесных пар для грузовых вагонов с осями РУ1Ш и РВ2Ш и колесами диаметром по кругу катания 957 мм. Номинальный диаметр колеса – 950 мм...

Философские школы эпохи эллинизма (неоплатонизм, эпикуреизм, стоицизм, скептицизм). Эпоха эллинизма со времени походов Александра Македонского, в результате которых была образована гигантская империя от Индии на востоке до Греции и Македонии на западе...

Именные части речи, их общие и отличительные признаки Именные части речи в русском языке — это имя существительное, имя прилагательное, имя числительное, местоимение...

Интуитивное мышление Мышление — это пси­хический процесс, обеспечивающий познание сущности предме­тов и явлений и самого субъекта...

Объект, субъект, предмет, цели и задачи управления персоналом Социальная система организации делится на две основные подсистемы: управляющую и управляемую...

Studopedia.info - Студопедия - 2014-2024 год . (0.01 сек.) русская версия | украинская версия