Измерение автономного риска: среднеквадратическое отклонение
Чтобы быть полезной для практического использования, любая мера риска должна иметь точное определение – нам необходима мера «сжатости» распределения вероятности. Одной из таких мер является среднеквадратическое (стандартное) отклонение (СКО) – обозначается . Чем меньше квадратическое отклонение, тем более распределение вероятности «сжато» и соответственно тем ниже риск акций. Чтобы вычислить среднеквадратическое отклонение, мы выполняем действия, представленные в таблице 5.3. Таблица 5.3 Вычисление среднеквадратического отклонения для компании «М»
Стандартное отклонение = 1. Вычисляем среднюю доходность: Средняя доходность = P1k1 + P2k2+ …+ Pnkn = Мы уже выяснили ранее, что для компании «М» k = 15%. 2. Вычисляем отклонение каждого отдельного значения доходности ki от её среднего значения k: Отклонение = ki-k. 3. Возводим в квадрат каждое отклонение и взвешиваем полученные квадратические отклонения в соответствии с их вероятностями. Итогом является вариация доходности, как это показано в столбце 3 таблицы (формула 5.2): Вариация = . (5.2) 4. Наконец, извлекая из вариации квадратный корень, получаем среднеквадратическое отклонение (формула 7.3): Среднеквадратическое отклонение = (5.3) Таким образом, среднеквадратическое (стандартное) отклонение доходности – это в определенном смысле средневзвешенное отклонение от её ожидаемого значения, и оно показывает, насколько выше или ниже ожидаемой окажется вероятная фактическая доходность. Среднеквадратическое отклонение для компании «М» согласно таблице 5.3, составляет . Выполняя тот же расчёт, находим, что среднеквадратическое отклонение для компании «А» составляет 3,87%. Рис. 5.2. Диапазоны вероятности при нормальном распределении Таким образом, компания «М» имеет большее среднеквадратическое отклонение доходности, что указывает на большую вероятность того, что средняя доходность не будет достигнута. Следовательно, вложение в компанию «М» вне какого-либо портфеля является более рискованным. Если распределение вероятностей нормальное, или гауссовское то в 68,26% случаев фактическая доходность окажется в интервале 1 её СКО от среднего значения. На рисунке 5.2 отражен именно этот эффект. Кроме того, на рисунке также показаны и вероятности того, что доходность окажется в интервалах и от среднего значения. Для компании «М» k = 15% и , в то время как для компании «А» k = 15% и . Таким образом, если два распределения доходности этих акций нормальны, то с вероятностью существует 68,26% фактическая доходность компании «М» будет находиться в диапазоне 15 3,87%, или от 11,13 до 18,87%.
|