Соотношение между доходностью и риском
В предыдущем разделе мы увидели, что, согласно теории модели ценообразования капитальных активов (САРМ), бета-коэффициент является мерой релевантного риска акций. Теперь мы должны установить соотношение между риском и доходностью: какая рисковая премия будет достаточна инвесторам для принятого ими на себя риска, измеряемого с помощью бета-коэффициента? Для этого сначала введем несколько обозначений: — ожидаемая инвесторами (на ближайшие периоды) средняя доходность i -й акции; ki— требуемая инвесторами доходность акции. Понятно, что если ki больше инвесторы не будут покупать эти акции, а те, что уже имеются, будут стараться продать. В противном случае инвесторы бы стремились приобрести эти акции, поскольку это, вероятно, оказалось бы удачным вложением капитала. Инвесторам будет безразлично, приобретать или нет акции, если ki = ; — реализованная в прошлом периоде фактическая доходность акции. Человек, естественно, не знает, какова она окажется по итогам наступающего периода, когда он рассматривает вопрос о приобретении акций в его начале; kRF— безрисковая доходность (норма прибыли). В данном контексте kRF обычно будет означать доходность долгосрочных облигаций Казначейства; bi — бета-коэффициент i-й акции. Напомним, что для акций А со «средним» риском бета-коэффициент равен bA - 1,0; — требуемая инвесторами доходность рыночного портфеля ценных бумаг — портфеля, состоящего из всех акций, присутствующих на рынке. kM одновременно представляет собой также и требуемую доходность акции со средним риском; RPM = ( -kRF) — премия за риск рыночного портфеля (а также премия за риск средней акции). Это дополнительная, сверх безрисковой, доходность, требуемая инвесторами для компенсации среднерыночного риска; RPi. = ( - kRF)bi = (RPM) bi -— премия за риск i-й акции. Премия за риск акции будет меньше, равна или больше премии за риск рынка RPM в зависимости от того, будет ли бета-коэффициент акции меньше, равен или больше единицы. Если bi = bA = 1,0, то RPi. = RPM. Премия за риск рыночного портфеля (рыночный риск) зависит от степени несклонности инвесторов к риску. Если в данный момент облигации Казначейства приносят доходность, равную kRF = 6%, а рыночный портфель имеет доходность = 11%, то премия за риск рыночного портфеля составит 5%: RP = - kRF = 11% - 6% = 5%. Если нам известна премия за рыночный риск RPM, а также риск акции, измеренный с помощью ее бета-коэффициента bi, то мы можем найти премию за риск акции как их произведение: . Например, если и RPM = 5%, то RPi составляет 2,5%: Премия за риск акции i = RPi = = 5% 0,5% = 2,5% (5.9) Формулу для требуемой инвесторами доходности любого вложения можно записать так: Требуемая доходность = Безрисковая ставка + Рисковая премия. Здесь безрисковая ставка доходности включает в себя премию за предполагаемую инфляцию, причем предполагается, что изучаются активы, имеющие одинаковые сроки до погашения и ликвидность. В этих условиях соотношение между требуемой доходностью актива и риском можно графически представить линией рынка ценных бумаг (SML). Требуемую доходность акции i можно в этом случае выразить следующим образом (уравнение SML): Требуемая доходность акции i = Безрисковая ставка + +Рыночная премия за риск х Бета-коэффициент акции, или (5.10) Если акция j более рискованна, чем i, и имеет бета-коэффициент bi- = 2,0, то требуемая доходность по акции j составит 16%: = 6% + (11%-6%) 2 = 16%. Для акции А со средним по рынку риском, у которых b = 1,0, требуемая доходность 11%, — т. е. будет такой же, как и для рыночного портфеля: . Как уже отмечалось выше, уравнение (5.9) называется уравнением линии рынка ценных бумаг (SML). Эта линия при kRF = 6% и 11% представлена в графической форме на рис. 5.8.
Рис. 5.8. Линия рынка ценных бумаг (SML) Отметим при этом следующие важные моменты. 1. Требуемые инвесторами доходности активов откладываются по вертикальной оси, в то время как риск, измеряемый с помощью бета-коэффициента, откладывается по горизонтальной оси. 2. Для безрисковых активов бета-коэффициент равен единице, — следовательно, kRF рис. 5.8представляется как точка пересечения SML с вертикальной осью. Если бы мы могли составить портфель ценных бумаг, у которого бета-коэффициент был бы нулевым, его требуемая доходность была бы равна безрисковой. 3. Наклон линии SML (5% на рис. 5.8) отражает среднюю степень несклонности инвесторов криску — чем больше несклонность среднего инвестора к риску, тем: а) круче наклон линии, б) больше премия за риск акций и в) тем выше требуемая инвесторами доходность для всех рисковых активов. И линия рынка ценных бумаг, и положение компании на ней изменяются с течением времени вследствие изменений процентных ставок и бета-коэффициентов отдельных компаний, несклонности инвесторов к риску. Подобные эффекты будут рассмотрены в последующих разделах.
|