Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Описание установки и метода измерений. Маятник Обербека (рис. 1) представляет собой маховик, которому придана крестообразная форма





 

Маятник Обербека (рис. 1) представляет собой маховик, которому придана крестообразная форма. На четырех стержнях насажены грузы одинаковой массы m 0, которые могут быть закреплены на различных расстояниях R от оси вращения. На общей оси с маховиком насажены два шкива. На тот или иной шкив намотана нить, к свободному концу её, переброшенному через блок, прикреплен груз массой m. Под действием груза нить разматывается без скольжения и приводит маховик в равноускоренное вращательное движение.

Рассмотрим силы, действующие на груз. На груз действуют две силы: сила тяжести P = mg и сила натяжения нити F н. Спроецируем эти силы на ось X, которую направим вертикально вниз. Напишем второй закон Ньютона для поступательного движения груза

 

ma = mgF н. (1)

 

Так как масса нити пренебрежимо мала, то согласно третьему закону Ньютона, сила натяжения нити F н', действующая на маховик, равна силе натяжения (реакции) нити F н, действующей на груз:

 

| F н'| = | F н|. (2)

 

На маятник Обербека действуют момент силы натяжения M н' нити и момент силы трения M тр в подшипниках.

Основной закон динамики вращательного движения относительно оси, перпендикулярной плоскости рисунка, выразится уравнением

 

M н'M тр = J β, (3)

 

где J – момент инерции маятника Обербека, β – его угловое ускорение.

Так как в нашем опыте M тр<< M н', то уравнение (3) можно заменить уравнением

M н = J β. (4)

 

Момент силы натяжения равен произведению силы натяжения F н' на плечо силы, являющееся радиусом шкива r:

 

M н' = F н'· r = F н'· D /2, (5)

 

где D – диаметр шкива.

Из уравнения (1)

F н = m (ga). (6)

 

С учетом (2) и (6) формула (5) примет вид

 

(7)

 

Груз движется вниз равноускоренно, поэтому пройденный путь h определяется уравнением кинематики

 

, (8)

 

из которого выражаем линейное ускорение

 

(9)

 

Расчет ускорения по формуле (9) показывает, что в условиях нашего опыта a << g, поэтому уравнение (7) упрощаем до вида

 

(10)

Угловое ускорение β связано с линейным (тангенциальным) ускорением точек боковой поверхности шкива, равным ускорению груза m, соотношением

 

Тогда, учитывая (9), получим

 

(11)

 

Из уравнения (4) следует, что при J = const в случае действия на маховик двух различных моментов сил M 1 и M 2 отношение этих моментов прямо пропорционально отношению угловых ускорений

 

(12)

 

Согласно уравнениям (10) и (11) при D = const и h = const

 

(13)

(14)

 

Для проверки равенства (12) необходимо по результатам опыта определить отношение моментов сил по формуле (13) и отношение угловых ускорений по формуле (14) и сравнить эти отношения.

Для определения отношений (13) и (14) нужно изменять вращающий момент, подвешивая к нити грузы разной массы m 1 и m 2, не изменяя положения грузов m 0 на стержнях.

Согласно (4), угловое ускорение β обратно пропорционально J при M = const.

Если построить график зависимости 1/β = f (J) при M = const, то его линейность должна подтвердить обратно пропорциональную зависимость β от J. Величину, обратную β, найдем из (11):

 

(15)

Момент инерции маятника Обербека может быть определен как сумма моментов инерции крестовины со шкивом и грузов m 0. Если размеры грузов малы по сравнению с расстоянием R от центра груза до оси вращения, то их моменты инерции можно определить как моменты инерции материальных точек. Таким образом,

J = J 0 + km 0 R 2, (16)

 

где J 0 – момент инерции крестовины со шкивом, m 0 – масса груза, k – количество грузов.

Из формулы (16) следует, что момент инерции маятника Обербека можно изменить, меняя количество грузов на крестовине и их расстояние до оси вращения.

 







Дата добавления: 2015-08-12; просмотров: 500. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

ФАКТОРЫ, ВЛИЯЮЩИЕ НА ИЗНОС ДЕТАЛЕЙ, И МЕТОДЫ СНИЖЕНИИ СКОРОСТИ ИЗНАШИВАНИЯ Кроме названных причин разрушений и износов, знание которых можно использовать в системе технического обслуживания и ремонта машин для повышения их долговечности, немаловажное значение имеют знания о причинах разрушения деталей в результате старения...

Различие эмпиризма и рационализма Родоначальником эмпиризма стал английский философ Ф. Бэкон. Основной тезис эмпиризма гласит: в разуме нет ничего такого...

Индекс гингивита (PMA) (Schour, Massler, 1948) Для оценки тяжести гингивита (а в последующем и ре­гистрации динамики процесса) используют папиллярно-маргинально-альвеолярный индекс (РМА)...

Машины и механизмы для нарезки овощей В зависимости от назначения овощерезательные машины подразделяются на две группы: машины для нарезки сырых и вареных овощей...

Классификация и основные элементы конструкций теплового оборудования Многообразие способов тепловой обработки продуктов предопределяет широкую номенклатуру тепловых аппаратов...

Именные части речи, их общие и отличительные признаки Именные части речи в русском языке — это имя существительное, имя прилагательное, имя числительное, местоимение...

Studopedia.info - Студопедия - 2014-2026 год . (0.011 сек.) русская версия | украинская версия