Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Исследование пары двойственных задач





Поскольку двойственная задача также является ЗЛП, то её можно решить симплекс-методом. Однако двойственная задача и экономически, и математически тесно связана с прямой задачей, поэтому есть более простые способы её решения, если известно решение прямой задачи. Поэтому рассмотрим некоторые результаты, связывающие обе эти задачи.

Теорема. Пусть есть допустимоерешение задачи (1)-(3), есть допустимоерешение задачи (4)-(6). Тогда выполняется неравенство:

(7)

Теорема (достаточный признак оптимальности пары двойственных ЗЛП, или критерий оптимальности Канторовича). Если - такие допустимые решения (1)-(3) и (4)-(6) соответственно, что , то являются оптимальными решениями своих задач.

Первая теорема двойственности. Если одна из двойственных задач имеет оптимальное решение, то и другая задача также имеет оптимальное решение, причем

(8)

Экономической интерпретацией этой теоремы является утверждение, что при оптимальном плане суммарная стоимость запасов сырья равна суммарной стоимости продукции.

Вторая теорема двойственности (теорема о дополняющей нежесткости). Оптимальные решения пары двойственных задач связаны между собой следующими равенствами:

(9)
(10)

Формулы (9) и (10) можно применять следующим образом:

- если при оптимальном решении одной из пары двойственных задач какое-либо неравенство выполняется как строгое, то соответствующая ему двойственная переменная в оптимальном решении другой задачи равна нулю;

- если какая-нибудь переменная в оптимальном решении одной из задач не равна нулю, то соответствующее ей ограничение другой задачи выполняется как равенство.







Дата добавления: 2015-08-12; просмотров: 610. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Весы настольные циферблатные Весы настольные циферблатные РН-10Ц13 (рис.3.1) выпускаются с наибольшими пределами взвешивания 2...

Хронометражно-табличная методика определения суточного расхода энергии студента Цель: познакомиться с хронометражно-табличным методом опреде­ления суточного расхода энергии...

ОЧАГОВЫЕ ТЕНИ В ЛЕГКОМ Очаговыми легочными инфильтратами проявляют себя различные по этиологии заболевания, в основе которых лежит бронхо-нодулярный процесс, который при рентгенологическом исследовании дает очагового характера тень, размерами не более 1 см в диаметре...

Классификация холодных блюд и закусок. Урок №2 Тема: Холодные блюда и закуски. Значение холодных блюд и закусок. Классификация холодных блюд и закусок. Кулинарная обработка продуктов...

ТЕРМОДИНАМИКА БИОЛОГИЧЕСКИХ СИСТЕМ. 1. Особенности термодинамического метода изучения биологических систем. Основные понятия термодинамики. Термодинамикой называется раздел физики...

Травматическая окклюзия и ее клинические признаки При пародонтите и парадонтозе резистентность тканей пародонта падает...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия