Определение двойственных оценок ЗЛП
Вернемся к нашему примеру ЗЛП: Эта задача в двойственной форме имеет вид: Исходная задача была нами решена графически, и решение равно . Воспользуемся теоремой о дополняющей нежесткости и подставим компоненты этого решения в ограничения исходной задачи. В результате видно, что первое и второе ограничения выполняются как точные равенства, а третье ограничение является строгим неравенством. Согласно теореме, третья переменная двойственной задачи должна быть равна нулю, т.е. . Согласно этой же теореме, поскольку обе компоненты решения исходной задачи не равны нулю, и оба ограничения двойственной задачи выполняются как равенства. Если в этих равенствах обнулить последнюю переменную, то получим систему двух уравнений с двумя неизвестными: Решая эту систему, получаем . Другим способом получения двойственного решения является использование симплекс-таблиц исходной задачи. Рассмотрим последюю симплекс-таблицу из предыдущего раздела. Решение двойственной задачи (план) находится в индексной строке, в столбцах, соответствующих первоначальному базису. Рассмотрим данный способ в более общей постановке. Пусть имеется пара двойственных задач, основная и двойственная. Предположим, что с помощью симплекс-метода найден оптимальный план прямой задачи, и этот план определяется базисом, образованным векторами . Обозначим через матрицу-строку, составленную из коэффициентов при этих переменных в целевой функции прямой задачи, а через - матрицу, обратную матрице D, составленной из компонент векторов оптимального базиса. Тогда имеет место следующее утверждение. Теорема. Если основная задача линейного программирования имеет оптимальный план , то является оптимальным планом двойственной задачи. Применительно к рассмотренному нами примеру матрица D, составленная из столбцов первоначальной симплекс-таблицы, соответствующих окончательномубазису, имеет вид: . Тогда обратная к ней матрица равна . Вектор находится в левой части последней симплекс-таблицы и равен . Проведем перемножение, получим результат: . Эти значения и находятся в индексной строке последней таблицы.
|