Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Геометрические векторы.





Геометрический вектор - это направленный отрезок в пространстве. Обозначается: , где A1 и A2 - начальная и конечная точки вектора. Абстрактное обозначение вектора: и т.д. Механический смысл вектора : это изображение результата перемещения частицы из точки A1 в точку A2. По определению два вектора считаются равными, если один получается из другого параллельным переносом (сдвигом).Таким образом, вектор можно перенести в любую точку. Векторы можно умножать на числа и складывать (какперемещения); эти действия называются линейными. Векторы (ненулевые), лежащие на одной прямой или на параллельных прямых, пропорциональны друг другу (или коллинеарны). Нулевой вектор пропорционален любому вектору.

Прямоугольные системы координат O xyz в трехмерном пространствебывают левые (например, оси: O x вправо, O y вперед, O z вверх) и правые (например, оси:O x вперед, O y право, O z вверх). Правая система не совмещается с левой поворотами (системы как целого) в пространстве. Каждая точка M пространства имеет три координаты (числа), которые записываются в скобках после обозначения точки: M(x;y;z).Например, чтобы изобразить точку M(-2;3;4), следует из начала координат O переместиться на 2 единицы в направлении, противоположном оси O x, затем на 3 единицы в направлении оси O y и на 4 единицы вверх; в результате мы попадем в точку M. Соответственно, каждый геометрический вектор характеризуется тремя координатами x, y, z - числовыми проекциями вектора на координатные оси. Координаты записывают в скобках после обозначения вектора: (x; y; z).Зная координаты начальной и конечной точек A1(x 1; y 1; z 1) и A2(x 2; y 2; z 2) вектора , можно найти координаты x,y,z этоговектора:

x = x 2- x 1, y = y 2- y 1, z = z 2- z 1. (1) Ортами прямоугольной системы координат называются три вектора длины 1 вдоль координатных осей (ед. число - орт; слово ortho означает «прямой»). Орты образуют базис в трехмерном пространстве, так как любой вектор (x; y; z) однозначно разлагается по ортам:

= + y × + z × . (2)

Формула (2) устанавливает взаимно однозначное соответствие между геометрическими векторами и координатными векторами (x; y; z) из R 3 .

Пример. (а) Координатысередины (центра масс, центра тяжести) K отрезка

равны полусуммам одноименных координат точек A1 и A2.

(б) В треугольнике A1A2A3 координаты точки пересечения медиан (центра масс, центра тяжести) K равны средним арифметическим значениям одноименных координат вершин.

(в) Втреугольнойпирамиде A1A2A3A4 координаты центра масс (центра тяжести) K равны средним арифметическим значениям одноименных координат вершин пирамиды.

· Пояснение. (а) Очевидно, = 1/2 × . Расписывая это равенство

в координатах, получим xK - x1 = 1/2×(x 2x 1), откуда x K= 1/2×(x 1 + x 2); аналогично находятся y K, z K. (б) Пусть A1B - медиана, x B = 1/2×(x 2+ x 3). Как известно, точка K

делит медиану A1B на отрезки в отношении 2:1 по длине (считая от вершины A1). Тогда = 2/3× . Расписывая это равенство в координатах, получим x K - x 1 =2/3×(x B- x 1), откуда x K= x 1+2/3× x B-2/3× x 1= x 1+ 2/3×1/2×(x 2+ x 3) - 2/3× x 1=(x 1+ x 2+ x 3)/3. Для y K и z K выражения аналогичны. (в) Пусть D - точка пересечения медиан треугольника A1A2A3, тогда x D=1/3×(x 1+ x 2+x3). Точка K находится на отрезке A4D и делит его на части в отношении 3:1 по длине (считая от вершины A4).Тогда =3/4× . Расписывая это равенство в координатах, получим x K- x 4= 3/4 × (x D- x 4), откуда x K= x 4 +3/4× 1/3 ×(x 1+ x 2+ x 3) - 3/4× x 4 = (x 1+ x 2+ x 3+ x 4) /4. ·







Дата добавления: 2015-08-12; просмотров: 516. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Различие эмпиризма и рационализма Родоначальником эмпиризма стал английский философ Ф. Бэкон. Основной тезис эмпиризма гласит: в разуме нет ничего такого...

Индекс гингивита (PMA) (Schour, Massler, 1948) Для оценки тяжести гингивита (а в последующем и ре­гистрации динамики процесса) используют папиллярно-маргинально-альвеолярный индекс (РМА)...

Методика исследования периферических лимфатических узлов. Исследование периферических лимфатических узлов производится с помощью осмотра и пальпации...

Закон Гука при растяжении и сжатии   Напряжения и деформации при растяжении и сжатии связаны между собой зависимостью, которая называется законом Гука, по имени установившего этот закон английского физика Роберта Гука в 1678 году...

Характерные черты официально-делового стиля Наиболее характерными чертами официально-делового стиля являются: • лаконичность...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия