Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Скалярное произведение.





Скалярное (т.е. числовое) произведение двух геометрических векторов

и определяетсякакпроизведение длин этих векторов и косинуса угла между ними:

= | | × | |×cos j, (3)

где | | и | | - длины (модули, абсолютные величины) векторов, а j - угол между векторами. Скалярное произведение можно выразить через (числовую) проекцию Пр вектора на вектор :

= | | × Пр . (4)

В частности, длина вектора связана со скалярным произведением:

= | | 2 . (5)

Механическое истолкование скалярного произведения: - это работа, которую производит источник силы при перемещении предмета на вектор .

(Например, источники силы трения производят отрицательную работу и, значит,

приобретают энергию - нагреваются; в этом примере cos j < 0.)

Свойства скалярного произведения: 1) = ; 2) ×(k ) =

= k (k – число); 3) × ( + ) = + × .

Свойства 2) и 3) получаются из формулы (4) и соответствующих свойств проекций. Они означают, что при скалярном умножении векторов скобки раскрываются, как при умножении чисел. Например, (2 - 3 ) × = 2 × – 3 × .

Из определения (3) легко вывести «таблицу» скалярного умножения ортов , , :

× = × = × = 1, × = × = × = × = × = × = 0.

Разлагая векторы и по ортам и используя «таблицу» скалярного умножения ортов, получаем.

Правило. Имеет место алгебраическая формула для скалярного произведения

векторов (x 1; y 1; z 1 (x 2; y 2 ; z 2):

× = x 1× x 2+ y 1× y 2 + z 1× z 2. (6)

Примененияскалярного произведения в геометрии.

1) Длина вектора (x; y; z):

ï ï = (x 2+ y 2 + z 2) 1 / 2 (7)

(это - следствие формул (5) и (6)).

2)Расстояние между двумя точками A1 иA2:

ï ï =((x 2- x 1)2+(y 2- y 1)2+(z 2- z 1)2)1/2. (8)

3)Косинус угла между двумя векторами и :

cos j = × / ê ê× ê ê. (9)

4)Если два (ненулевых) вектора и перпендикулярны (ортогональны),то

× = 0. И наоборот. (Слово orthogonal переводится как «прямоугольный»).

Замечание. В задачах, в которых фигурируют только точки и векторы на координатной плоскости O xy, координата z (равная нулю) не пишется. В этой ситуации применяют формулы, аналогичные (6)-(9). Например, расстояние между двумя точками теперь вычисляется по формуле

| A1A2 |= ï ï =((x 2 - x 1)2 + (y 2- y 1)2) 1/ 2. (10)







Дата добавления: 2015-08-12; просмотров: 444. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Условия, необходимые для появления жизни История жизни и история Земли неотделимы друг от друга, так как именно в процессах развития нашей планеты как космического тела закладывались определенные физические и химические условия, необходимые для появления и развития жизни...

Метод архитекторов Этот метод является наиболее часто используемым и может применяться в трех модификациях: способ с двумя точками схода, способ с одной точкой схода, способ вертикальной плоскости и опущенного плана...

Примеры задач для самостоятельного решения. 1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P   1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P...

Эндоскопическая диагностика язвенной болезни желудка, гастрита, опухоли Хронический гастрит - понятие клинико-анатомическое, характеризующееся определенными патоморфологическими изменениями слизистой оболочки желудка - неспецифическим воспалительным процессом...

Признаки классификации безопасности Можно выделить следующие признаки классификации безопасности. 1. По признаку масштабности принято различать следующие относительно самостоятельные геополитические уровни и виды безопасности. 1.1. Международная безопасность (глобальная и...

Прием и регистрация больных Пути госпитализации больных в стационар могут быть различны. В цен­тральное приемное отделение больные могут быть доставлены: 1) машиной скорой медицинской помощи в случае возникновения остро­го или обострения хронического заболевания...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия